

# Agilent 1260 Infinity Variable Wavelength Detector



# Agilent Technologies

# User Manual

# Notices

© Agilent Technologies, Inc. 2011-2012, 2013

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

### **Manual Part Number**

G1314-90013 Rev. C

### **Edition**

11/2013

Printed in Germany

Agilent Technologies Hewlett-Packard-Strasse 8 76337 Waldbronn

This product may be used as a component of an in vitro diagnostic system if the system is registered with the appropriate authorities and complies with the relevant regulations. Otherwise, it is intended only for general laboratory use.

### Warranty

The material contained in this document is provided "as is," and is subiect to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

### **Technology Licenses**

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

### **Restricted Rights Legend**

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

### **Safety Notices**

### CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

### WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

# In This Guide

This manual covers the Agilent 1260 Infinity Variable Wavelength Detectors

- G1314B Agilent 1260 Infinity Variable Wavelength Detector VL
- G1314C Agilent 1260 Infinity Variable Wavelength Detector VL+

#### **1** Introduction to the Variable Wavelength Detector

This chapter gives an introduction to the detector, instrument overview and internal connectors.

#### 2 Site Requirements and Specifications

This chapter gives information on environmental requirements, physical and performance specifications.

#### **3** Installing the Detector

This chapter provides information on unpacking, checking on completeness, stack considerations and installation of the module.

### 4 Using the Detector

This chapter provides information on how to set up the detector for an analysis and explains the basic settings.

### 5 How to optimize the detector

This chapter gives hints on how to select the detector parameters and the flow cell.

### 6 Troubleshooting and Diagnostics

Overview about the troubleshooting and diagnostic features.

### 7 Error Information

This chapter describes the meaning of detector error messages, and provides information on probable causes and suggested actions how to recover from error conditions.

### 8 Test Functions

This chapter describes the detector's built in test functions.

#### 9 Maintenance

This chapter provides general information on maintenance and repair of the detector.

### **10** Parts and Materials for Maintenance

This chapter provides information on parts for maintenance.

### **11 Identifying Cables**

This chapter provides information on cables used with the Agilent 1200 Infinity Series modules.

### **12 Hardware Information**

This chapter describes the detector in more detail on hardware and electronics.

### **13 Appendix**

This chapter provides addition information on safety, legal and web.

# Contents

### 1 Introduction to the Variable Wavelength Detector 9

Introduction to the Detector 10 Optical System Overview 11 System Overview 16

### 2 Site Requirements and Specifications 19

Site Requirements 20 Physical Specifications 24 Performance Specifications 25

### **3 Installing the Detector 31**

Unpacking the Detector 32 Optimizing the Stack Configuration 34 Installation Information on Leak and Waste Handling 39 Installing the Detector 43 Flow Connections to the Detector 46

### 4 Using the Detector 49

Leak and Waste Handling 50 Setting up an Analysis 51 Special Settings of the Detector 66

### 5 How to optimize the detector 73

Optimizing the Detector Performance 74 Match the Flow Cell to the Column 75 Set the Detector Parameters 78

### 6 Troubleshooting and Diagnostics 79

Overview of the Detector's Indicators and Test Functions 80 Status Indicators 81 Available Tests versus Interfaces 83 Agilent Lab Advisor Software 84

#### Contents

### 7 Error Information 85

What Are Error Messages86General Error Messages87Detector Error Messages94

### 8 Test Functions 103

Intensity Test 104 Cell Test 106 Wavelength Verification-Calibration 108 ASTM Drift and Noise Test 110 Quick Noise Test 111 Dark Current Test 112 Holmium Oxide Test 114

### 9 Maintenance 117

Introduction to Maintenance 118 Warnings and Cautions 119 Overview of Maintenance 121 Cleaning the Module 122 Exchanging a Lamp 123 Exchanging a Flow Cell 126 **Repairing the Flow Cells** 128 Using the Cuvette Holder 130 Correcting Leaks 132 Replacing Leak Handling System Parts 133 Replacing the Interface Board 134 Replacing the Module's Firmware 135

### **10 Parts and Materials for Maintenance 137**

Overview of Maintenance Parts 138 Standard Flow Cell 10 mm / 14  $\mu$ L 139 Micro Flow Cell, 5 mm / 1  $\mu$ L (only for support) 140 Micro Flow Cell 3 mm / 2  $\mu$ L 142 Semi-micro Flow Cell 6 mm / 5  $\mu$ L 144 High Pressure Flow Cell 10 mm / 14  $\mu$ L 146 Cuvette Holder 148 Leak Parts 149 Kits 150

### 11 Identifying Cables 151

Cable Overview 152 Analog Cables 154 Remote Cables 156 BCD Cables 159 CAN/LAN Cables 161 RS-232 Cable Kit 162 External Contact Cable 163

### 12 Hardware Information 165

Firmware Description 166 Optional Interface Boards 169 Electrical Connections 172 Interfaces 175 Setting the 8-bit Configuration Switch (without On-board) LAN 182 Instrument Layout 187 Early Maintenance Feedback (EMF) 188

#### Contents

### 13 Appendix 191

General Safety Information 192 Batteries Information 195 Radio Interference 196 Sound Emission 197 UV Radiation 198 Solvent Information 199 Declaration of Conformity for HOX2 Filter 201 Agilent Technologies on Internet 202



# Introduction to the Variable Wavelength Detector

Introduction to the Detector 10 **Optical System Overview** 11 Flow Cell 12 G1314B/C Lamp 13 Source Lens Assembly 13 Entrance Slit Assembly 13 Filter Assembly 13 Mirror Assemblies M1 and M2 14 Grating Assembly 14 Beam Splitter Assembly 14 Photo Diodes Assemblies 15 Photo Diode ADC (analog-to-digital converter) 15 System Overview 16 Leak and Waste Handling 16

This chapter gives an introduction to the detector, instrument overview and internal connectors.



**1** Introduction to the Variable Wavelength Detector Introduction to the Detector

# Introduction to the Detector

The Agilent 1260 Infinity variable wavelength detector is designed for highest optical performance, GLP compliance and easy maintenance with:

- data rate up to , see "Peakwidth Settings" on page 71,
  - 13 Hz for standard HPLC with G1314B VWD VL,
  - 55 Hz for fast-HPLC G1314C VWD VL+,
- deuterium lamp for highest intensity and lowest detection limit over a wavelength range of 190 to 600 nm,
- optional flow-cell cartridges (standard (10 mm, 14  $\mu$ L), high pressure (10 mm, 14  $\mu$ L), micro (5 mm, 1  $\mu$ L), semi-micro (6 mm, 5  $\mu$ L)) are available and can be used depending on the application needs,
- · easy front access to lamp and flow cell for fast replacement, and
- built-in holmium oxide filter for fast wavelength accuracy verification.

For specifications refer to Table 4 on page 27.

Two version of the Agilent 1260 Infinity variable wavelength detector are available:

- G1314B Agilent 1260 Infinity Variable Wavelength Detector VL
- G1314C Agilent 1260 Infinity Variable Wavelength Detector VL+ high data rates for fast HPLC

# **Optical System Overview**

The optical system of the detector is shown in the figure below. Its radiation source is a deuterium-arc discharge lamp for the ultraviolet (UV) wavelength range from 190 to 600 nm. The light beam from the deuterium lamp passes through a lens, a filter assembly, an entrance slit, a spherical mirror (M1), a grating, a second spherical mirror (M2), a beam splitter, and finally through a flow cell to the sample diode. The beam through the flow cell is absorbed depending on the solutions in the cell, in which UV absorption takes place, and the intensity is converted to an electrical signal by means of the sample photodiode. Part of the light is directed to the reference photodiode by the beam splitter to obtain a reference signal for compensation of intensity fluctuation of the light source. A slit in front of the reference photodiode cuts out light of the sample bandwidth. Wavelength selection is made by rotating the grating, which is driven directly by a stepper motor. This configuration allows fast change of the wavelength. The cutoff filter is moved into the lightpath above 370 nm to reduce higher order light.



Figure 1 Optical Path of the Variable Wavelength Detector

### 1 Introduction to the Variable Wavelength Detector

**Optical System Overview** 

# **Flow Cell**

A variety of flow-cell cartridges can be inserted using the same quick and simple mounting system.



Figure 2 Cartridge Type Flow Cell

### Table 1Flow Cell Data

|                                   | STD                        | Semi-micro        | Micro             | High Pressure       |     |
|-----------------------------------|----------------------------|-------------------|-------------------|---------------------|-----|
| Maximum pressure                  | 40 (4)                     | 40 (4)            | 120 (12)          | 400 (40)            | bar |
| Path length                       | 10 (conical)               | 6 (conical)       | 3 (conical)       | 10 (conical)        | mm  |
| Volume                            | 14                         | 5                 | 2                 | 14                  | μL  |
| Inlet i.d.                        | 0.25                       | 0.17              | 0.12              | 0.25                | mm  |
| Inlet length                      | 750                        | 250               | 310               | 750                 | mm  |
| Outlet i.d.                       | 0.30                       | 0.17              | 0.17              | 0.17                | mm  |
| Outlet length                     | 120                        | 120               | 120               | 120                 | mm  |
| Total volume                      | 60.77                      | 14.49             | 14.00             | 60.77               | μL  |
| Materials in contact with solvent | SST, quartz, PTFE,<br>PEEK | SST, quartz, PTFE | SST, quartz, PTFE | SST, quartz, Kapton |     |

# G1314B/C Lamp

The light source for the UV wavelength range is a deuterium lamp. As a result of plasma discharge in a low pressure deuterium gas, the lamp emits light over the 190 to 600 nm wavelength range.

## **Source Lens Assembly**

The source lens receives the light from the deuterium lamp and focuses it onto the entrance slit.

## **Entrance Slit Assembly**

The entrance slit assembly has an exchangeable slit. The standard one has a 1-mm slit. For replacement and calibration purposes to optimize the alignment, a slit with a hole is needed.

## **Filter Assembly**

The filter assembly is electromechanically actuated. During wavelength calibrations it moves into the light path.

The filter assembly has two filters installed and is processor-controlled.

**OPEN** nothing in light path

**CUTOFF** cut off filter in light path at  $\lambda > 370$  nm

HOLMIUM holmium oxide filter for wavelength check

A photo sensor determines the correct position.

### **1** Introduction to the Variable Wavelength Detector

**Optical System Overview** 



Figure 3 Filter Assembly

# **Mirror Assemblies M1 and M2**

The instrument contains two spherical mirrors (M1 and M2). The beam adjustable is vertically and horizontally. Both mirrors are identical.

## **Grating Assembly**

The grating separates the light beam into all its component wavelengths and reflects the light onto mirror #2.

### **Beam Splitter Assembly**

The beam splitter splits the light beam. One part goes directly to the sample diode. The other part of the light beam goes to the reference diode.

# **Photo Diodes Assemblies**

Two photo diode assemblies are installed in the optical unit. The sample diode assembly is located on the left side of the optical unit. The reference diode assembly is located in the front of the optical unit.

# Photo Diode ADC (analog-to-digital converter)

The photo diode current is directly converted to digital data direct photo current digitalization. The data is transferred to the detector main board . The photo diode ADC boards are located close to the photo diodes.

1 Introduction to the Variable Wavelength Detector System Overview

# System Overview

# Leak and Waste Handling

The 1200 Infinity Series has been designed for safe leak and waste handling. It is important that all security concepts are understood and instructions are carefully followed.

Introduction to the Variable Wavelength Detector 1 System Overview



**Figure 4** Leak and waste handling concept (overview - typical stack configuration as an example)

The solvent cabinet (1) is designed to store a maximum volume of 6 L solvent. The maximum volume for an individual bottle stored in the solvent cabinet should not exceed 2.5 L. For details, see the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets (a printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available on the Internet).

The leak pan (2) (individually designed in each module) guides solvents to the front of the module. The concept covers also leakages on internal parts (e.g. the detector's flow cell). The leak sensor in the leak pan stops the running system as soon as the leak detection level is reached.

The leak pan's outlet port (3, A) guides excessive overfill from one module to the next, as the solvent flows into the next module's leak funnel (3, B) and the connected corrugated waste tube (3, C). The corrugated waste tube guides the solvent to the next lower positioned module's leak tray and sensor.

The waste tube of the sampler's needle wash port (4) guides solvents to waste.

The condense drain outlet of the autosampler cooler (5) guides condensate to waste.

The waste tube of the purge valve (6) guides solvents to waste.

The waste tube connected to the leak pan outlet on each of the bottom instruments (7) guides the solvent to a suitable waste container.



# **Site Requirements and Specifications**

Site Requirements 20 Physical Specifications 24 Performance Specifications 25 Specification Conditions 29

2

This chapter gives information on environmental requirements, physical and performance specifications.



# **Site Requirements**

### **Site Requirements**

A suitable environment is important to ensure optimal performance of the instrument.

# **Power Consideration**

The detector power supply has wide ranging capabilities, see "Physical Specifications" on page 24. It accepts any line voltage in the above mentioned range. Consequently, there is no voltage selector in the rear of the detector. There are also no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

### WARNING

### Instrument is partially energized when switched off

The power supply still uses some power, even when the power switch on the front panel is turned OFF. Repair work at the detector can lead to personal injuries, e. g. shock hazard, when the detector cover is opened and the instrument is connected to power.

→ To disconnect the detector from the power line, unplug the power cord.

### WARNING

### Hazard of electrical shock or damage of your instrumentation

can result, if the devices are connected to a line voltage higher than specified.

→ Connect your instrument to the specified line voltage only.

### CAUTION

Inaccessible power plug.

In case of emergency it must be possible to disconnect the instrument from the power line at any time.

- → Make sure the power connector of the instrument can be easily reached and unplugged.
- Provide sufficient space behind the power socket of the instrument to unplug the cable.

# **Power Cords**

Different power cords are offered as options with the module. The female end of all power cords is identical. It plugs into the power-input socket at the rear. The male end of each power cord is different and designed to match the wall socket of a particular country or region.

### WARNING

### Absence of ground connection or use of unspecified power cord

The absence of ground connection or the use of unspecified power cord can lead to electric shock or short circuit.

- Never operate your instrumentation from a power outlet that has no ground connection.
- Never use a power cord other than the Agilent Technologies power cord designed for your region.

### WARNING

### Use of unsupplied cables

Using cables not supplied by Agilent Technologies can lead to damage of the electronic components or personal injury.

→ Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

# 2 Site Requirements and Specifications

**Site Requirements** 

### WARNING

### Unintended use of supplied power cords

Using power cords for unintended purposes can lead to personal injury or damage of electronic equipment.

Never use the power cords that Agilent Technologies supplies with this instrument for any other equipment.

# **Bench Space**

The detector dimensions and weight (see "Physical Specifications" on page 24) allows you to place the detector on almost any desk or laboratory bench. It needs an additional 2.5 cm (1.0 inch) of space on either side and approximately 8 cm (3.1 inch) in the rear for air circulation and electric connections.

If the bench should carry an Agilent 1200 Infinity Series system, make sure that the bench is designed to bear the weight of all modules.

The detector should be operated in a horizontal position.

### Environment

Your detector will work within the specifications at ambient temperatures and relative humidity described in "Physical Specifications" on page 24.

ASTM drift tests require a temperature change below 2 °C/h (3.6 °F/h) over one hour period. Our published drift specification (refer also to "Performance Specifications G1314B" on page 25 or "Performance Specifications G1314C" on page 27) is based on these conditions. Larger ambient temperature changes will result in larger drift.

Better drift performance depends on better control of the temperature fluctuations. To realize the highest performance, minimize the frequency and the amplitude of the temperature changes to below 1 °C/h (1.8 °F/h). Turbulences around one minute or less can be ignored.

### CAUTION

Condensation within the module

Condensation will damage the system electronics.

- Do not store, ship or use your module under conditions where temperature fluctuations could cause condensation within the module.
- → If your module was shipped in cold weather, leave it in its box and allow it to warm slowly to room temperature to avoid condensation.

### NOTE

This module is designed to operate in a typical electromagnetic environment, i.e. where RF transmitters such as mobile telephones may not be used in close proximity.

2 Site Requirements and Specifications Physical Specifications

# **Physical Specifications**

| Туре                                   | Specification                                  | Comments                   |
|----------------------------------------|------------------------------------------------|----------------------------|
| Weight                                 | 11 kg (25 lbs)                                 |                            |
| Dimensions<br>(height × width × depth) | 140 x 345 x 435 mm<br>(5.5 x 13.5 x 17 inches) |                            |
| Line voltage                           | 100 – 240 VAC, ± 10 %                          | Wide-ranging<br>capability |
| Line frequency                         | 50 or 60 Hz, ± 5 %                             |                            |
| Power consumption                      | 220 VA, 85 W / 290 BTU                         | Maximum                    |
| Ambient operating temperature          | 0–55 °C (32–131 °F)                            |                            |
| Ambient non-operating temperature      | -40 - 70 °C (-40 - 158 °F)                     |                            |
| Humidity                               | < 95 % r.h. at 40 °C (104 °F)                  | Non-condensing             |
| Operating altitude                     | Up to 2000 m (6562 ft)                         |                            |
| Non-operating altitude                 | Up to 4600 m (15091 ft)                        | For storing the module     |
| Safety standards: IEC, CSA,<br>UL      | Installation category II, Pollution degree 2   | For indoor use only.       |

### Table 2 Physical Specifications

# **Performance Specifications**

# Performance Specifications G1314B

| Туре                    | Specification                                                                                                                                                                                                                                                                                                                                                                                   | Comments                                                                            |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Detection type          | Double-beam photometer                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |
| Light source            | Deuterium lamp                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |
| Wavelength range        | 190 – 600 nm                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     |
| Short term noise (ASTM) | $<\pm$ 0.5·10 <sup>-5</sup> AU at 254 nm                                                                                                                                                                                                                                                                                                                                                        | See "Specification<br>Conditions" on page 29                                        |
| Drift                   | 3·10 <sup>-4</sup> AU/h at 254 nm                                                                                                                                                                                                                                                                                                                                                               | See "Specification<br>Conditions" on page 29.                                       |
| Linearity               | > 2 AU (5 %) upper limit                                                                                                                                                                                                                                                                                                                                                                        | See "Specification<br>Conditions" on page 29.                                       |
| Wavelength accuracy     | ± 1 nm                                                                                                                                                                                                                                                                                                                                                                                          | Self-calibration with<br>deuterium lines, verification<br>with holmium oxide filter |
| Maximum data rate       | 13 Hz                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                     |
| Band width              | 6.5 nm typical                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |
| Flow cells              | Standard: 14 μL volume,<br>10 mm cell path length and<br>40 bar (580 psi) pressure<br>maximum<br>High pressure: 14 μL volume,<br>10 mm cell path length and<br>400 bar (5800 psi) pressure<br>maximum<br>Micro: 1 μL volume, 5 mm cell<br>path length and 40 bar<br>(580 psi) pressure maximum<br>Semi-micro: 5 μL volume,<br>6 mm cell path length and<br>40 bar (580 psi) pressure<br>maximum | Can be repaired on component<br>level                                               |

### Table 3 Performance Specifications G1314B

### 2 Site Requirements and Specifications

**Performance Specifications** 

| Туре                        | Specification                                                                                                                                                                                                                                                                                                | Comments |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Control and data evaluation | Agilent ChemStation for LC                                                                                                                                                                                                                                                                                   |          |
| Analog outputs              | Recorder/integrator: 100 mV<br>or 1 V, output range 0.001 to<br>2 AU, one output                                                                                                                                                                                                                             |          |
| Communications              | Controller-area network<br>(CAN), RS-232C, APG Remote:<br>ready, start, stop and<br>shut-down signals, LAN<br>(optional)                                                                                                                                                                                     |          |
| Safety and maintenance      | Extensive diagnostics, error<br>detection and display (through<br>Agilent ChemStation), leak<br>detection, safe leak handling,<br>leak output signal for<br>shutdown of pumping system.<br>Low voltages in major<br>maintenance areas.                                                                       |          |
| GLP features                | Early maintenance feedback<br>(EMF) for continuous tracking<br>of instrument usage in terms<br>of lamp burn time with<br>user-settable limits and<br>feedback messages.<br>Electronic records of<br>maintenance and errors.<br>Verification of wavelength<br>accuracy with built-in holmium<br>oxide filter. |          |
| Housing                     | All materials recyclable.                                                                                                                                                                                                                                                                                    |          |

### Table 3 Performance Specifications G1314B

# Performance Specifications G1314C

| Туре                        | Specification                                                                                                                                                                                                                                                                                                                                                                                   | Comments                                                                            |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Detection type              | Double-beam photometer                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |
| Light source                | Deuterium lamp                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |
| Wavelength range            | 190 – 600 nm                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     |
| Short term noise (ASTM)     | <± 0.5·10 <sup>-5</sup> AU at 254 nm                                                                                                                                                                                                                                                                                                                                                            | See "Specification<br>Conditions" on page 29                                        |
| Drift                       | 3·10 <sup>.4</sup> AU/h at 254 nm                                                                                                                                                                                                                                                                                                                                                               | See "Specification<br>Conditions" on page 29.                                       |
| Linearity                   | > 2 AU (5 %) upper limit                                                                                                                                                                                                                                                                                                                                                                        | See "Specification<br>Conditions" on page 29.                                       |
| Wavelength accuracy         | ± 1 nm                                                                                                                                                                                                                                                                                                                                                                                          | Self-calibration with<br>deuterium lines, verification<br>with holmium oxide filter |
| Maximum data rate           | 55 Hz                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                     |
| Band width                  | 6.5 nm typical                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |
| Flow cells                  | Standard: 14 μL volume,<br>10 mm cell path length and<br>40 bar (580 psi) pressure<br>maximum<br>High pressure: 14 μL volume,<br>10 mm cell path length and<br>400 bar (5800 psi) pressure<br>maximum<br>Micro: 1 μL volume, 5 mm cell<br>path length and 40 bar<br>(580 psi) pressure maximum<br>Semi-micro: 5 μL volume,<br>6 mm cell path length and<br>40 bar (580 psi) pressure<br>maximum | Can be repaired on component<br>level                                               |
| Control and data evaluation | Agilent ChemStation for LC                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |

### Table 4 Performance Specifications G1314C

### 2 Site Requirements and Specifications

**Performance Specifications** 

| Туре                   | Specification                                                                                                                                                                                                                                                                                                | Comments |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Analog outputs         | Recorder/integrator: 100 mV<br>or 1 V, output range 0.001 to<br>2 AU, one output                                                                                                                                                                                                                             |          |
| Communications         | Controller-area network<br>(CAN), RS-232C, APG Remote:<br>ready, start, stop and<br>shut-down signals, LAN<br>(optional)                                                                                                                                                                                     |          |
| Safety and maintenance | Extensive diagnostics, error<br>detection and display (through<br>Agilent ChemStation), leak<br>detection, safe leak handling,<br>leak output signal for<br>shutdown of pumping system.<br>Low voltages in major<br>maintenance areas.                                                                       |          |
| GLP features           | Early maintenance feedback<br>(EMF) for continuous tracking<br>of instrument usage in terms<br>of lamp burn time with<br>user-settable limits and<br>feedback messages.<br>Electronic records of<br>maintenance and errors.<br>Verification of wavelength<br>accuracy with built-in holmium<br>oxide filter. |          |
| Housing                | All materials recyclable.                                                                                                                                                                                                                                                                                    |          |

### Table 4 Performance Specifications G1314C

### **Specification Conditions**

ASTM: "Standard Practice for Variable Wavelength Photometric Detectors Used in Liquid Chromatography".

Reference conditions: Standard flow cell, path length 10 nm, flow 1 mL/min LC-grade methanol.

#### Noise:

<± 0.5·10<sup>-5</sup> AU at 254 nm, TC 2 s, ASTM

RT = 2.2 \* TC

#### Linearity:

NOTE

Linearity is measured with caffeine at 265 nm.

The specifications are based on the standard lamp (G1314-60100) and may be not achieved when other lamp types or aged lamps are used.

ASTM drift tests require a temperature change below 2 °C/hour (3.6 F/hour) over one hour period. Our published drift specification is based on these conditions. Larger ambient temperature changes will result in larger drift.

Better drift performance depends on better control of the temperature fluctuations. To realize the highest performance, minimize the frequency and the amplitude of the temperature changes to below 1 °C/hour (1.8 F/hour). Turbulences around one minute or less can be ignored.

Performance tests should be done with a completely warmed up optical unit (> two hours). ASTM measurements require that the detector should be turned on at least 24 hours before start of testing.

### **Time Constant versus Response Time**

According to ASTM E1657-98 "Standard Practice of Testing Variable-Wavelength Photometric Detectors Used in Liquid Chromatography" the time constant is converted to response time by multiplying by the factor 2.2.

### 2 Site Requirements and Specifications

**Performance Specifications** 



Agilent 1260 Infinity VWD User Manual

# **Installing the Detector**

Unpacking the Detector 32 Unpacking the Detector 32 Delivery Checklist 33 Detector Accessory Kit Contents 33 Optimizing the Stack Configuration 34 One Stack Configuration 34 Two Stack Configuration 37 Installation Information on Leak and Waste Handling 39 Installing the Detector 43 Flow Connections to the Detector 46

This chapter provides information on unpacking, checking on completeness, stack considerations and installation of the module.



# **Unpacking the Detector**

### **Damaged Packaging**

If the delivery packaging shows signs of external damage, please call your Agilent Technologies sales and service office immediately. Inform your service representative that the instrument may have been damaged during shipment.

### CAUTION

### "Defective on arrival" problems

If there are signs of damage, please do not attempt to install the module. Inspection by Agilent is required to evaluate if the instrument is in good condition or damaged.

- → Notify your Agilent sales and service office about the damage.
- → An Agilent service representative will inspect the instrument at your site and initiate appropriate actions.

### Condensation

### CAUTION

Condensation within the detector

Condensation will damage the system electronics.

- Do not store, ship or use your detector under conditions where temperature fluctuations could cause condensation within the detector.
- → If your detector was shipped in cold weather, leave it in its box and allow it to warm up slowly to room temperature to avoid condensation.

# **Delivery Checklist**

Ensure all parts and materials have been delivered with the detector. The delivery checklist is shown below. Please report missing or damaged parts to your local Agilent Technologies sales and service office.

| Description                                                                         | Quantity    |
|-------------------------------------------------------------------------------------|-------------|
| Variable wavelength detector                                                        | 1           |
| Power cable                                                                         | 1           |
| Flow cell                                                                           | As ordered  |
| <i>User Manual</i> on Documentation CD (part of the shipment - not module specific) | 1 per order |
| Accessory kit (see "Accessory Kit" on page 150)                                     | 1           |

 Table 5
 Variable Wavelength Detector Checklist

# **Detector Accessory Kit Contents**

The G1314B/C VWD is shipped with Accessory kit (G1314-68755) (see "Accessory Kit" on page 150).

# **Optimizing the Stack Configuration**

If your module is part of a complete Agilent Liquid Chromatograph, you can ensure optimum performance by installing the following configurations. These configurations optimize the system flow path, ensuring minimum delay volume.

## **One Stack Configuration**

Ensure optimum performance by installing the modules of the Agilent 1260 Infinity LC System in the following configuration (See Figure 5 on page 35 and Figure 6 on page 36). This configuration optimizes the flow path for minimum delay volume and minimizes the bench space required.

### Installing the Detector 3

**Optimizing the Stack Configuration** 





### **3** Installing the Detector

**Optimizing the Stack Configuration** 



Figure 6 Recommended Stack Configuration for 1260 Infinity (Rear View)
### **Two Stack Configuration**

To avoid excessive height of the stack when the autosampler thermostat is added to the system it is recommended to form two stacks. Some users prefer the lower height of this arrangement even without the autosampler thermostat. A slightly longer capillary is required between the pump and autosampler. (See Figure 7 on page 37 and Figure 8 on page 38).



Thermostat for the ALS/Fraction collector (optional)

Figure 7 Recommended Two Stack Configuration for 1260 Infinity (Front View)

**Optimizing the Stack Configuration** 





# Installation Information on Leak and Waste Handling

The Agilent 1200 Infinity Series has been designed for safe leak and waste handling. It is important that all security concepts are understood and instructions are carefully followed.

#### WARNING

#### Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

- → When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- The volume of substances should be reduced to the minimum required for the analysis.
- Never exceed the maximal permissible volume of solvents (6 L) in the solvent cabinet.
- → Do not use bottles that exceed the maximum permissible volume as specified in the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.
- → Arrange the bottles as specified in the usage guideline for the solvent cabinet.
- → A printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available on the Internet.

#### NOTE

#### **Recommendations for Solvent Cabinet**

For details, see the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.

Installation Information on Leak and Waste Handling



Figure 9 Leak and waste handling (overview - typical stack configuration as an example)

Installation Information on Leak and Waste Handling

| 1 | Solvent cabinet                                                           |
|---|---------------------------------------------------------------------------|
| 2 | Leak pan                                                                  |
| 3 | Leak pan's outlet port (A), leak funnel (B) and corrugated waste tube (C) |
| 4 | Waste tube of the sampler's needle wash                                   |
| 5 | Condense drain outlet of the autosampler cooler                           |
| 6 | Waste tube of the purge valve                                             |
| 7 | Waste tube                                                                |

1 Stack the modules according to the adequate stack configuration.

The leak pan outlet of the upper module must be vertically positioned above the leak tray of the lower module, see Figure 9 on page 40.

- **2** Connect data and power cables to the modules, see section *Installing the Module* below.
- **3** Connect capillaries and tubes to the modules, see section *Flow Connections to the module* below or the relevant system manual.

#### Toxic, flammable and hazardous solvents, samples and reagents

- → Keep solvent path free from blockages.
- → Keep the flow path closed (in case the pump in the system is equipped with a passive inlet valve, solvent may leak out due to hydrostatic pressure, even if your instrument is off).
- → Avoid loops.
- → Tubes must not sag.
- → Do not bend tubes.
- → Do not immerse tube end in waste liquid.
- → Do not intubate tubes in other tubes.
- → For correct tubing follow instructions on label attached to the module.

WARNING

Installation Information on Leak and Waste Handling



Figure 10 Warning label (illustration for correct waste tubing)

| Parts required | #                         | p/n                                                                               | Description                                                                                                                     |
|----------------|---------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                | 1                         |                                                                                   | Detector                                                                                                                        |
|                | 1                         |                                                                                   | Power cord                                                                                                                      |
|                | 1                         |                                                                                   | LAN cable (cross-over or twisted pair network cable)                                                                            |
|                | 1                         |                                                                                   | Agilent ChemStation or other control software                                                                                   |
|                | 1                         | G4208A                                                                            | Instant Pilot                                                                                                                   |
|                | For o                     | ther cables see                                                                   | below and section "Cable Overview" on page 152.                                                                                 |
|                | Insta                     | int Pilot (G4208/                                                                 | A) is optional.                                                                                                                 |
| Preparations   | Othe<br>• L<br>• P<br>• U | er LC modules must<br>ocate bench space<br>Provide power con<br>Inpack the detect | st have appropriate firmware installed to work with the detector.<br>se.<br>inections.<br>or.                                   |
| NOTE           | Befo<br>been              | re adding the de<br>updated to firm                                               | etector into an existing system assure that the existing modules have nware revision that is supported by the control software. |
|                |                           |                                                                                   |                                                                                                                                 |

- **1** Install the LAN interface board in the detector (if required), see "Replacing the Interface Board" on page 134
- 2 Place the detector in the stack or on the bench in a horizontal position.

**Installing the Detector** 



**3** Ensure the line power switch at the front of the detector is OFF.

Line power switch with green light

Figure 11 Front View of Detector

**NOTE** The figure above shows the flow cell already installed. The flow cell area is closed with a cover. The flow cell has to be installed as described in "Flow Connections to the Detector" on page 46.

- **4** Connect the power cable to the power connector at the rear of the detector.
- **5** Connect the CAN cable to other Agilent 1260 Infinity modules.
- **6** If a Agilent ChemStation is the controller, connect the LAN connection to the LAN interface board in the detector.

NOTE

If an Agilent 1200 Infinity Series DAD/MWD/FLD is in the system, the LAN should be connected to the DAD/MWD/FLD (due to higher data load).

- 7 Connect the analog cable (optional).
- **8** Connect the APG remote cable (optional) for non-Agilent 1260 Infinity instruments.



**9** Turn ON power by pushing the button at the lower left-hand side of the detector. The status LED should be green.

Power



| NOTE | The detector is turned ON when the line power switch is pressed and the green indicator lamp is illuminated. The detector is turned OFF when the line power switch is protruding and the green light is OFF. |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOTE | To disconnect the detector from line, unplug the power cord. The power supply still uses some power, even if the power switch at the front panel is turned OFF.                                              |
| NOTE | The detector was shipped with default configuration settings. To change these settings, see "Setting the 8-bit Configuration Switch (without On-board) LAN" on page 182.                                     |

# **Flow Connections to the Detector**

| Tools required                                         | <b>Desc</b><br>Wren<br>(for ca                                                                                                                                                                                                                                              | <b>ription</b><br>ch, 1/4 – 5/16 inch<br>apillary connections | )                                                          |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------|--|--|
| Parts required                                         | #<br>1                                                                                                                                                                                                                                                                      | <b>p/n</b><br>G1314-68755                                     | Description<br>Accessory kit                               |  |  |
| Hardware required Other modules depend on system setup |                                                                                                                                                                                                                                                                             |                                                               |                                                            |  |  |
| Preparations                                           | Detec                                                                                                                                                                                                                                                                       | ctor is installed in th                                       | e LC system.                                               |  |  |
| WARNING                                                | Toxic, flammable and hazardous solvents, samples and reagents<br>The handling of solvents, samples and reagents can hold health and safety risks.                                                                                                                           |                                                               |                                                            |  |  |
|                                                        | → When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice. |                                                               |                                                            |  |  |
|                                                        | The volume of substances should be reduced to the minimum required for the analysis.                                                                                                                                                                                        |                                                               |                                                            |  |  |
|                                                        | → Do                                                                                                                                                                                                                                                                        | o not operate the                                             | instrument in an explosive atmosphere.                     |  |  |
| NOTE                                                   | The fl                                                                                                                                                                                                                                                                      | low cell is shipped                                           | l with a filling of isopropanol (also recommended when the |  |  |

instrument and/or flow cell is shipped to another location). This is to avoid breakage due to subambient conditions.

**Flow Connections to the Detector** 



**Flow Connections to the Detector** 



The installation of the detector is now complete.

NOTE

The detector should be operated with the front cover in place to protect the flow cell area against strong drafts from the outside.



# **Using the Detector**

Leak and Waste Handling 50 Setting up an Analysis 51 Before Using the System 51 **Requirements and Conditions** 53 Optimization of the System 55 Preparing the HPLC System 56 Running the Sample and Verifying the Results 65 Special Settings of the Detector 66 Control Settings 66 Online Spectra 67 Scanning with the VWD 68 Analog Output Settings 69 **Special Setpoints** 70

This chapter provides information on how to set up the detector for an analysis and explains the basic settings.



# Leak and Waste Handling

#### WARNING

#### Toxic, flammable and hazardous solvents, samples and reagents

#### The handling of solvents, samples and reagents can hold health and safety risks.

- → When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- The volume of substances should be reduced to the minimum required for the analysis.
- → Do not operate the instrument in an explosive atmosphere.
- → Never exceed the maximal permissible volume of solvents (6 L) in the solvent cabinet.
- → Do not use bottles that exceed the maximum permissible volume as specified in the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.
- → Arrange the bottles as specified in the usage guideline for the solvent cabinet.
- → A printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available on the Internet.
- The residual free volume in the appropriate waste container must be large enough to collect the waste liquid.
- → Check the filling level of the waste container regularly.
- → To achieve maximal safety, check the correct installation regularly.

#### NOTE

#### **Recommendations for Solvent Cabinet**

For details, see the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.

For details on correct installation, see "Installation Information on Leak and Waste Handling" on page 39.

### Setting up an Analysis

NOTE

This chapter can be used for

- preparing the system,
- · to learn the set up of an HPLC analysis and
- to use it as an instrument check to demonstrate that all modules of the system are correctly installed and connected. It is not a test of the instrument performance.
- Learn about special settings

All descriptions are based on the Agilent ChemStation B.02.01. Newer versions may look different.

### **Before Using the System**

#### **Solvent Information**

Observe recommendations on the use of solvents in chapter "Solvents" in the pump's reference manual.

#### Priming and Purging the System

When the solvents have been exchanged or the pumping system has been turned off for a certain time (for example, overnight) oxygen will re-diffuse into the solvent channel between the solvent reservoir, vacuum degasser (when available in the system) and the pump. Solvents containing volatile ingredients will slightly lose these. Therefore priming of the pumping system is required before starting an application. **Setting up an Analysis** 

| Activity                                                           | Solvent                 | Comments                                                                  |
|--------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------|
| After an installation                                              | Isopropanol             | Best solvent to flush air out of the system                               |
| When switching between reverse phase and normal phase (both times) | Isopropanol             | Best solvent to flush air out of the system                               |
| After an installation                                              | Ethanol or Methanol     | Alternative to Isopropanol (second choice) if no Isopropanol is available |
| To clean the system when using buffers                             | Bidistilled water       | Best solvent to re-dissolve buffer<br>crystals                            |
| After a solvent change                                             | Bidistilled water       | Best solvent to re-dissolve buffer crystals                               |
| After the installation of normal phase seals (P/N 0905-1420)       | Hexane + 5% Isopropanol | Good wetting properties                                                   |

#### Table 6 Choice of Priming Solvents for Different Purposes

#### NOTE

The pump should never be used for priming empty tubings (never let the pump run dry). Use a syringe to draw enough solvent for completely filling the tubings to the pump inlet before continuing to prime with the pump.

- 1 Open the purge valve of your pump (by turning it counterclockwise) and set flow rate to 3 5 mL/min.
- 2 Flush all tubes with at least 30 mL of solvent.
- **3** Set flow to required value of your application and close the purge valve.

NOTE Pump for approximately 10 minutes before starting your application.

# **Requirements and Conditions**

#### What You Will Need

The table below lists the items you need to have for the set up of the analysis. Some of these are optional (not required for the basic system).

| Agilent 1200<br>Infinity Series<br>system | Pump (plus degassing)                                                                |
|-------------------------------------------|--------------------------------------------------------------------------------------|
|                                           | Autosampler                                                                          |
|                                           | Detector, standard flow cell installed                                               |
|                                           | Degasser (optional)                                                                  |
|                                           | Column Compartment (optional)                                                        |
|                                           | Agilent ChemStation or<br>Instant Pilot G4208, optional for basic operation.         |
|                                           | System should be correctly set up for LAN communication with the Agilent ChemStation |
| Column:                                   | Zorbax Eclipse XDB-C18, 4.6 x 150 mm, 5 μm (993967-902) or an equivalent column      |
| Standard:                                 | Agilent isocratic checkout sample (01080-68704)                                      |

Table 7What you will need

#### Conditions

A single injection of the isocratic test standard is made under the conditions given in Table 8 on page 54:

#### Table 8Conditions

| Flow                           | 1.5 mL/min                        |
|--------------------------------|-----------------------------------|
| Stoptime                       | 8 min                             |
| Solvent                        | 100% (30% water/70% Acetonitrile) |
| Temperature                    | Ambient                           |
| Wavelength                     | sample 254 nm                     |
| Injection Volume               | 1 µL                              |
| Column Temperature (optional): | 25 °C or ambient                  |

#### **Typical Chromatogram**

A typical chromatogram for this analysis is shown in Figure 13 on page 55. The exact profile of the chromatogram will depend on the chromatographic conditions. Variations in solvent quality, column packing, standard concentration and column temperature will all have a potential effect on peak retention and response.



Figure 13 Typical Chromatogram with UV-detector

### **Optimization of the System**

The settings used for this analysis are specific for this purpose. For other applications the system can be optimized in various ways. Please refer to the section "Optimizing the Detector Performance" on page 74.

### **Preparing the HPLC System**

- 1 Turn on the Agilent ChemStation PC and the monitor.
- 2 Turn on the modules.
- **3** Start the Agilent ChemStation software. If the pump, autosampler, thermostatted column compartment and detector are found, the Agilent ChemStation screen should look like shown in Figure 14 on page 56. The System status is red (**Not Ready**).



 Figure 14
 Initial Agilent ChemStation screen (Method and Run Control)

**4** Turn on the detector lamp, pump and autosampler by clicking the **System On** button or the buttons below the module icons on the graphical user interface (GUI).

After some time, the pump, thermostatted column compartment and detector module will turn to green.



Figure 15 Turning on the HPLC Module

- **5** Purge the pump. For more information "Priming and Purging the System" on page 51.
- 6 Allow the detector to warm up of at least 60 minutes to provide a stable baseline (see example in Figure 16 on page 58).



**Figure 16** Stabilization of Baseline

#### NOTE

For reproducible chromatography, the detector and lamp should be on for at least one hour. Otherwise the detector baseline may still drift (depending on the environment).

**7** For the isocratic pump, fill the solvent bottle with the mixture of HPLC-grade bi-distilled water (30 %) and acetonitrile (70 %). For binary- and quaternary pumps you can use separate bottles.

8 Click on the Load Method button, select DEF\_LC.M and press OK. Alternatively, double-click on the method in the method window. The default LC method parameters are transferred into the modules.



Figure 17 Loading Default LC Method

Setting up an Analysis

**9** Click on the module icons (Figure 18 on page 60) and open the **Setup** of these modules. Figure 19 on page 61 shows the detector settings (do not change the detector parameters at this time).



Figure 18 Open the module menu

10 Enter the pump parameters mentioned under Table 8 on page 54

| VWD Signal : System-2                                                                                                      | ×I                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signal     Time       Wavelength:                                                                                          | <ul> <li>1 signal with individual wavelength setting</li> <li>stop and post time can be set (if required)</li> <li>peakwidth depends on the peaks in the<br/>chromatogram, see "Peakwidth Settings" on<br/>page 71.</li> </ul> |
| Line Time Wavelength Balance Scan       Insert         Append       Cut         Copy       ▲         ● Table       Graphic | • time table for programmable actions during the run                                                                                                                                                                           |
|                                                                                                                            |                                                                                                                                                                                                                                |
| Analog Output<br>Zero Offset:<br>5 ≈<br>Attenuation:                                                                       | <ul> <li>Zero Offset Limits: 1 – 99 % in steps of 1 %</li> <li>Attenuation Limits: 0.98 – 4000 mAU at discrete</li> </ul>                                                                                                      |
| 1000 💌 mAU                                                                                                                 | values for either 100 mV or 1 V full scale                                                                                                                                                                                     |
| Store additionally<br>Signal w/o<br>Reference<br>Reference only                                                            | <ul> <li>additional signals can be stored with the normal signal (for diagnostics)</li> </ul>                                                                                                                                  |
| Autobalance<br>✓ Prerun<br>✓ Postrun                                                                                       | <ul> <li>autobalance to zero absorbance (on the analog<br/>output plus offset) at begin and/or end of run</li> </ul>                                                                                                           |
| Special Setpoints                                                                                                          | • see "Special Setpoints" on page 70.                                                                                                                                                                                          |

**Figure 19** Detector Settings (default)

- 11 Pump the water/acetonitrile (30/70 %) mobile phase through the column for 10 minutes for equilibration.
- 12 Click the button 🖶 and select Change... to open the Signal Plot information. Select the Pump: Pressure and the VWD A: Signal 254 as signals. Change the Y-range for the VWD to 1 mAU and the offset to 20 % and the pressure offset to 50 %. The X-axis range should be 15 minutes. Press **OK** to exit this screen.



Figure 20

Edit Signal Plot Window

The Online Plot (Figure 21 on page 63) shows both, the pump pressure and the detector absorbance signals. Pressing **Adjust** the signals can be reset to the offset value and **Balance** would do a balance on the detector.



Figure 21 Online Plot Window

**13** If both baselines are stable, set the Y-range for the detector signal to 100 mAU.

### NOTE

If you start with a new UV-lamp for the first time, the lamp may show initial drift for some time (burn-in effect).

**Setting up an Analysis** 

14 Select the menu item **RunControl** > **Sample Info** and enter information about this application (Figure 22 on page 64). Press **OK** to leave this screen.

| stem-z                 |        |                                                                                                                                                                                                                                                                                                                                      |   |
|------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| RunControl Instrument  | Method | Sequence View                                                                                                                                                                                                                                                                                                                        |   |
| Kan Hethod             | F5     | C.M                                                                                                                                                                                                                                                                                                                                  |   |
| Sample Info            |        | Sample Info: System-2                                                                                                                                                                                                                                                                                                                |   |
| Omine Data Analysis    |        |                                                                                                                                                                                                                                                                                                                                      |   |
| Resume Injection       |        | Operator Name: Wolfgang                                                                                                                                                                                                                                                                                                              |   |
| Run Sequence           | F6     |                                                                                                                                                                                                                                                                                                                                      |   |
| Pause Sequence         |        | Data File                                                                                                                                                                                                                                                                                                                            |   |
| Resume Sequence        |        | Path: E:\CHEMSTATION\2\DATA\                                                                                                                                                                                                                                                                                                         |   |
| Stop Run/Inject/Sequen | ce F8  |                                                                                                                                                                                                                                                                                                                                      |   |
|                        |        |                                                                                                                                                                                                                                                                                                                                      |   |
| UGCALAS,M              | III    | ISO_01.D                                                                                                                                                                                                                                                                                                                             |   |
|                        |        |                                                                                                                                                                                                                                                                                                                                      |   |
|                        |        |                                                                                                                                                                                                                                                                                                                                      |   |
|                        |        | Lo <u>c</u> ation: Vial 1 [blank run if no entry]                                                                                                                                                                                                                                                                                    |   |
|                        |        | Lo <u>c</u> ation: Vial 1 (blank run if no entry)<br>Sample <u>N</u> ame: Isocratic test sample                                                                                                                                                                                                                                      |   |
|                        |        | Lo <u>c</u> ation: <mark>Vial 1 (blank run if no entry)</mark><br>Sample <u>N</u> ame: Isocratic test sample<br>Sample <u>A</u> mount: 0 Multip[ier: 1                                                                                                                                                                               |   |
|                        |        | Lo <u>c</u> ation: Vial 1 (blank run if no entry) Sample Name: Isocratic test sample Sample Amount: 0 Multiplier: 1 ISTD Amount: 0 Dilution: 1                                                                                                                                                                                       |   |
|                        |        | Location: Vial 1       (blank run if no entry)         Sample Name:       Isocratic test sample         Sample Amount:       0         ISTD Amount:       0                                                                                                                                                                          |   |
|                        |        | Location:       Vial 1       (blank run if no entry)         Sample Name:       Isocratic test sample                                                                                                                                                                                                                                |   |
|                        |        | Logation: Vial 1 (blank run if no entry) Sample Name: Isocratic test sample Sample Amount: 0 Multiplier: 1 ISTD Amount: 0 Dilution: 1 Comment:                                                                                                                                                                                       |   |
|                        |        | Logation:       Vial 1       (blank run if no entry)         Sample Name:       Isocratic test sample       Multiplier:       1         Sample Amount:       0       Multiplier:       1         ISTD Amount:       0       Dilution:       1         Comment:       Isocratic test sample, 1 ul, 30/70 H2O/Acetonitrile, 1.5 ml/min |   |
|                        |        | Logation:       Vial 1       (blank run if no entry)         Sample Name:       Isocratic test sample       Multiplier:       1         Sample Amount:       0       Multiplier:       1         ISTD Amount:       0       Dilution:       1         Comment:       Isocratic test sample, 1 ul, 30/70 H2O/Acetonitrile, 1.5 ml/min |   |
|                        |        | Logation:       Vial 1       (blank run if no entry)         Sample Mame:       Isocratic test sample       Multiplier:       1         Sample Amount:       0       Multiplier:       1         ISTD Amount:       0       Dilution:       1         Comment:       Isocratic test sample, 1 ul, 30/70 H2O/Acetonitrile, 1.5 ml/min |   |
|                        |        | Logation:       Vial 1       (blank run if no entry)         Sample Mame:       Isocratic test sample       Multiplier:       1         Sample Amount:       0       Multiplier:       1         ISTD Amount:       0       Dilution:       1         Comment:       Isocratic test sample, 1 ul, 30/70 H2O/Acetonitrile, 1.5 ml/min | × |

Figure 22 Sample Information

**15** Fill the content of an isocratic standard sample ampoule into a vial and seal the vial with a cap and place the vial into autosampler tray (position #1).

### **Running the Sample and Verifying the Results**

- 1 To start a run select the menu item RunControl > Run Method.
- **2** This will start the modules and the online plot on the Agilent ChemStation will show the resulting chromatogram.



**Figure 23** Chromatogram with Isocratic Test Sample

Information about using the Data Analysis functions can be obtained from the Using your ChemStation manual supplied with your system.

NOTE

# **Special Settings of the Detector**

In this chapter special settings of the detector are described.

# **Control Settings**

| 🔄 Set up VWD Signal                                                | VWD Control : System-2                                  |                                                                             | Lamp: turn on and off of UV-lamp.                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ♣ Control<br>M_Online Spectra<br>Ø Not Ready Information<br>⑦ Help | Lamp<br>© oni<br>© off                                  | Error Method<br>Take current method<br>Analog Output Bange<br>O 0.1 V O 1 V | <ul> <li>At Power On: automatic lamp-on at power on.</li> <li>Error Method: take error method or current method (in case of an error)</li> <li>Analog Output Range: can be set to either 100 mV or 1 V full scale, see "Analog Output Settings" on page 6</li> </ul> |
|                                                                    | At Power On                                             | Lamp Type                                                                   | <ul> <li>Lamp Type: can be set to either<br/>G1314-60100 (standard VWD lamp)<br/>2140-0590 (DAD lamps), see also<br/>"Exchanging a Lamp" on page 123.</li> </ul>                                                                                                     |
|                                                                    | Automatic Turn On<br>Turn lamp on at:<br>Date: 29.12.20 | 05 <dd.mm.yyyy></dd.mm.yyyy>                                                | <ul> <li>Automatic Turn On: lamps can be<br/>programmed (detector must be on f<br/>this).</li> <li>Help: online help.</li> </ul>                                                                                                                                     |
|                                                                    | Time: 11:20:03                                          | <hh:mm:ss> Cancel <u>H</u>elp</hh:mm:ss>                                    |                                                                                                                                                                                                                                                                      |



### **Online Spectra**

1 To view the online spectra select Online Spectra.

NOTE

This online spectrum is taken during a stop-flow condition only while the peak is kept in the flow cell, see "Scanning with the VWD" on page 68.



Figure 25 Online Spectra Window

2 Change the absorbance and wavelength range according your needs.

**Special Settings of the Detector** 

### Scanning with the VWD

- 1 Set up a run.
- **2** Start a run.
- 3 While running on the baseline, select from the menu Instrument > More VWD > Blank Scan.

A background scan is stored in the memory.



- Step 1: Blank Scan: scan of the background (solvent) is stored in the memory.
- *Step 2:* **Sample Scan**: scan of the peak of interest is taken while the peak stays in the flow cell (stop-flow condition).
- Online Spectrum: Sample Scan minus Blank Scan.

**4** When the peak of interest enters the flow cell, stop the flow (set flow rate to zero or open the purge valve) and wait a few moments to stabilize the concentration.

#### NOTE

Turning off the pump would stop the run and no access to the sample scan is possible.

5 Select from the menu Instrument > More VWD > Sample Scan.

A sample scan is taken in the range defined under "Special Setpoints" on page 70 and the Online Spectra window (see "Online Spectra" on page 67) displays the result (Sample Scan minus Blank Scan).

Analog Output Range: can be set to either 100 mV

Zero Offset:can be set to either 100 mV or 1 V full

Attenuation Limits: 0.98 to 4000 mAU at discrete

values for either 100 mV or 1 V full scale.

### **Analog Output Settings**

- 1 To change the Output Range of the analog outputs select VWD Control.
- 2 To change the offset and the attenuation select VWD Signal > More.

•

•

•

scale.

or 1 V full scale.

| 🔄 Set up VWD Signal           | VWD Control : System ( | 2 X                         |
|-------------------------------|------------------------|-----------------------------|
| 🚜 Control<br>🎦 Online Spectra | Lamp<br>O on           | Error Method                |
| 9 Not Ready Information       | Coff                   | Take current method         |
|                               |                        | Analog Output <u>R</u> ange |
|                               | At Power On            | O 0.1V ⊙ 1V                 |
|                               | Automatic Turn On      |                             |
|                               | Turn lamp on at:       |                             |
|                               | Date: 21.05.200        | 8 <dd.mm.yyyy></dd.mm.yyyy> |
|                               | 1ime: [15:56:41        | <hh:mm:ss></hh:mm:ss>       |
|                               | <u>0</u> K             | Cancel <u>H</u> elp         |



| 🔄 Set up VWD Signal                                                | VWD Signal : System-2                      |                                      | ×                                    |
|--------------------------------------------------------------------|--------------------------------------------|--------------------------------------|--------------------------------------|
| Control  CaOnline Spectra  MaOnline Spectra  Mot Ready Information | Signal<br>Wavelength:<br>254 nm            | Time<br>Stoptime:<br>as Pump ▲ min   | Analog Output<br>Zero Offset:<br>5 % |
| na neip                                                            | Peakwjdth (Responsetime)<br>>0.1 min (2 s) | no Limit ⊐<br>Posttime:<br>Off n min | Attenyation:                         |



**3** Change the values if required.

# **Special Setpoints**

1 To change the offset and the attenuation select VWD Signal > More > Special Setpoints.



#### NOTE

**Margin for negative Absorbance**: The higher the value the greater the baseline noise. Set this value only if you expect negative absorbance greater than -100 mAU.

#### **Peakwidth Settings**

\_\_\_\_\_

Do not use peak width shorter than necessary, see also "Set the Detector Parameters" on page 78.

- 1 To change the Peakwidth settings select Setup Detector Signals.
- 2 In the section Peakwidth (Responsetime) click on the drop-down list.
- **3** Change the Peakwidth according to your needs.



NOTE

Figure 29 Peakwidth Setting

**Peakwidth** enables you to select the peak width (response time) for your analysis. The peak width is defined as the width of a peak, in minutes, at half the peak height. Set the peak width to the narrowest expected peak in your chromatogram. The peak width sets the optimum response time for your detector. The peak detector ignores any peaks that are considerably narrower, or wider, than the peak width setting. The response time is the time between 10 % and 90 % of the output signal in response to an input step function. When the All spectrum storage option is selected, then spectra are acquired continuously depending on the setting of the peak width. The time specified by the peak width is used as a factor in the acquisition of spectra. The acquisition time for one spectrum is slightly less than the peak width divided by 8, see Table 9 on page 72 and Table 10 on page 72.

**Limits**: When you set the peak width (in minutes), the corresponding response time is set automatically and the appropriate data rate for signal acquisition is selected as shown in Table 9 on page 72 and Table 10 on page 72.

#### **4** Using the Detector

**Special Settings of the Detector** 

| Peak Width (min) <sup>1</sup> | Response Time (s) | Data Rate (Hz) |  |
|-------------------------------|-------------------|----------------|--|
| <0.005                        | 0.12              | 13.74          |  |
| >0.005                        | 0.12              | 13.74          |  |
| >0.01                         | 0.25              | 13.74          |  |
| >0.025                        | 0.5               | 13.74          |  |
| >0.05                         | 1.0               | 6.87           |  |
| >0.10                         | 2.0               | 3.43           |  |
| >0.20                         | 4.0               | 1.72           |  |
| >0.40                         | 8.0               | 0.86           |  |

 Table 9
 Peak Width — Response Time — Data Rate (G1314B VWD)

<sup>1</sup> Values in the User Interface may be rounded.

| Peak Width (min) <sup>1</sup> | Response Time (s) | Data Rate (Hz) |
|-------------------------------|-------------------|----------------|
| <0.00125                      | <0.031            | 55             |
| >0.00125                      | 0.031             | 27.5           |
| >0.0025                       | 0.062             | 13.74          |
| >0.005                        | 0.12              | 13.74          |
| >0.01                         | 0.25              | 13.74          |
| >0.025                        | 0.5               | 13.74          |
| >0.05                         | 1.0               | 6.87           |
| >0.10                         | 2.0               | 3.43           |
| >0.20                         | 4.0               | 1.72           |
| >0.40                         | 8.0               | 0.86           |

 Table 10
 Peak Width — Response Time — Data Rate (G1314C VWD SL)

<sup>1</sup> Values in the User Interface may be rounded.


Agilent 1260 Infinity VWD User Manual

5

# How to optimize the detector

Optimizing the Detector Performance 74 Match the Flow Cell to the Column 75 Set the Detector Parameters 78

This chapter gives hints on how to select the detector parameters and the flow cell.



# **Optimizing the Detector Performance**

The detector has a variety of parameters that can be used to optimize performance.

The information below will guide you on how to get the best detector performance. Follow these rules as a start for new applications. It gives a rule-of-thumb for optimizing the detector parameters.

# Match the Flow Cell to the Column

Figure 30 on page 75 recommends the flow cell that matches the column used. If more than one selection is appropriate, use the larger flow cell to get the best detection limit. Use the smaller flow cell for best peak resolution.

## **Standard HPLC Applications**

| Column length | Typical peak width  | Recommended flow cell |                     |                 |            |                |
|---------------|---------------------|-----------------------|---------------------|-----------------|------------|----------------|
| <= 5 cm       | 0.025 min           | Micro flow cell       |                     |                 |            | High           |
| 10 cm         | 0.05 min            |                       | Semimicro flow cell |                 |            | Pressure       |
| 20 cm         | 0.1 min             |                       |                     | Standard flow c | ell        | flow cell      |
| >= 40 cm      | 0.2 min             |                       |                     |                 |            |                |
|               | Typical flow rate   | 0.05-0.2 ml/min       | 0.2- 0.4 ml/min     | 0.4- 0.8 ml/min | 1-2 ml/min | 0.01- 5 ml/min |
| Inter         | nal column diameter | 1.0 mm                | 2.1mm               | 3.0 mm          | 4.6 mm     |                |

**Figure 30** Choosing a Flow Cell (Standard HPLC Applications)

#### **5** How to optimize the detector

Match the Flow Cell to the Column

## **Flow Cell Path Length**

Lambert-Beer's law shows a linear relationship between the flow cell path length and absorbance.

Absorbance = 
$$-\log T = \log \frac{l_0}{l} = \varepsilon \times C \times d$$

where

- T is the transmission, defined as the quotient of the intensity of the transmitted light I divided by the intensity of the incident light, I<sub>0</sub>,
- e is the extinction coefficient, which is a characteristic of a given substance under a precisely-defined set of conditions of wavelength, solvent, temperature and other parameters,

C is the concentration of the absorbing species,

[mol/L]

d [m] is the path length of the cell used for the measurement.

Therefore, flow cells with longer path lengths yield higher signals. Although noise usually increases little with increasing path length, there is a gain in signal-to-noise ratio. For example, in Figure 31 on page 77 the noise increased by less than 10 % but a 70 % increase in signal intensity was achieved by increasing the path length from 6 mm to 10 mm.

When increasing the path length, the cell volume usually increases – in the example from 5 – 14  $\mu$ L. Typically, this causes more peak dispersion. As demonstrated, this did not affect the resolution in the gradient separation in the example shown below.

As a rule-of-thumb the flow cell volume should be about 1/3 of the peak volume at half height. To determine the volume of your peaks, take the peak width as reported in the integration results multiply it by the flow rate and divide it by 3).



Figure 31 Influence of Cell Path Length on Signal Height

Traditionally LC analysis with UV detectors is based on comparing measurements with internal or external standards. To check photometric accuracy of the Agilent 1200 Series Infinity Variable Wavelength Detector it is necessary to have more precise information on path lengths of the VWD flow cells.

The correct response is:

expected response \* correction factor

Please find below the details of the Agilent 1200 Infinity Series Variable Wavelength Detector flow cells:

|  | Table 11 | Correction | factors | for A | Agilent | VWD | flow | cells |
|--|----------|------------|---------|-------|---------|-----|------|-------|
|--|----------|------------|---------|-------|---------|-----|------|-------|

| Part number                                                 | Path length (actual) | Correction factor |
|-------------------------------------------------------------|----------------------|-------------------|
| Standard flow cell 10 mm, 14 μL, 40 bar (G1314-60186)       | 10.15 ± 0.19 mm      | 10/10.15          |
| Semi-micro flow cell 6 mm, 5 µL (G1314-60183)               | 6.10 ± 0.19 mm       | 6/6.10            |
| Micro flow cell 3 mm, 2 µL, 120 bar (G1314-60187)           | 2.80 ± 0.19 mm       | 3/2.8             |
| High pressure flow cell 10 mm, 14 µL, 400 bar (G1314-60182) | 10.00 ± 0.19 mm      | 10/10             |

## NOTE

However you have to be aware that there are additional tolerance of gasket thickness and its compression ratio which is supposed to be very small in comparison with the machining tolerance.

# **Set the Detector Parameters**

- 1 Set peakwidth as close as possible to the width (at half height) of a narrow peak of interest. Refer to "Peakwidth Settings" on page 71.
- 2 Choose the sample wavelength
  - at a longer wavelength than the cut-off wavelength of the mobile phase,
  - at a wavelength where the analytes have strong absorptivity if you want to get the lowest possible detection limit,
  - at a wavelength with moderate absorptivity if you work with high concentrations, and
  - preferably where the spectrum is flat for better linearity.
- **3** Consider to use time-programming to further optimization.



6

# **Troubleshooting and Diagnostics**

Overview of the Detector's Indicators and Test Functions 80 Status Indicators 81 Power Supply Indicator 81 Module Status Indicator 82 Available Tests versus Interfaces 83 Agilent Lab Advisor Software 84

Overview about the troubleshooting and diagnostic features.



# **Overview of the Detector's Indicators and Test Functions**

## **Status Indicators**

The detector is provided with two status indicators which indicate the operational state (prerun, run, and error states) of the detector. The status indicators provide a quick visual check of the operation of the detector.

## **Error Messages**

In the event of an electronic, mechanical or hydraulic failure, the detector generates an error message in the user interface. For each message, a short description of the failure, a list of probable causes of the problem, and a list of suggested actions to fix the problem are provided.

## **Test Functions**

A series of test functions are available for troubleshooting and operational verification after exchanging internal components.

## Wavelength Verification / Recalibration

Wavelength recalibration is recommended after repair of internal components, and on a regular basis to ensure correct operation of the detector. The detector uses the deuterium alpha and beta emission lines for wavelength calibration.

## **Diagnostic Signals**

The detector has several signals (internal temperatures, voltages and currents of lamps) that can be used for diagnosing baseline problems.

6

# **Status Indicators**

Two status indicators are located on the front of the detector. The lower left indicates the power supply status, the upper right indicates the detector status.



with green light



## **Power Supply Indicator**

The power supply indicator is integrated into the main power switch. When the indicator is illuminated (*green*) the power is ON.

## **Module Status Indicator**

The module status indicator indicates one of six possible module conditions:

- When the status indicator is *OFF* (and power switch light is on), the module is in a *prerun* condition, and is ready to begin an analysis.
- A *green* status indicator, indicates the module is performing an analysis (*run* mode).
- A *yellow* indicator indicates a *not-ready* condition. The module is in a not-ready state when it is waiting for a specific condition to be reached or completed (for example, immediately after changing a set point), or while a self-test procedure is running.
- An *error* condition is indicated when the status indicator is *red*. An error condition indicates the module has detected an internal problem which affects correct operation of the module. Usually, an error condition requires attention (e.g. leak, defective internal components). An error condition always interrupts the analysis.

If the error occurs during analysis, it is propagated within the LC system, i.e. a red LED may indicate a problem of a different module. Use the status display of your user interface for finding the root cause/module of the error.

- A *blinking* indicator indicates that the module is in resident mode (e.g. during update of main firmware).
- A *fast blinking* indicator indicates that the module is in a low-level error mode. In such a case try to re-boot the module or try a cold-start (see "Special Settings" on page 185. Then try a firmware update (see "Replacing the Module's Firmware" on page 135). If this does not help, a main board replacement is required.

## **Available Tests versus Interfaces**

## NOTE

Depending on the used interface, the available tests and the screens/reports may vary.

Preferred tool should be the Agilent Diagnostic Software, see "Agilent Lab Advisor Software" on page 84.

In future, a user interface may not show the Diagnostics/Tests anymore. Then the Agilent Diagnostic Software must be used instead.

The Agilent ChemStation may not include any maintenance/test functions.

| Interface Test                         | Lab Advisor              | ChemStation          | Instant Pilot<br>G4208A  |
|----------------------------------------|--------------------------|----------------------|--------------------------|
| Wavelength Verification/Re-calibration | Calibration <sup>1</sup> | Tests <sup>1</sup>   | Maintenance <sup>1</sup> |
| Lamp Intensity Test                    | Tests <sup>1</sup>       | Tests <sup>1</sup>   | Diagnosis <sup>1</sup>   |
| ASTM Drift and Noise Test              | Tests <sup>1</sup>       | n/a                  | n/a                      |
| Quick Noise Test                       | Tests <sup>1</sup>       | n/a                  | n/a                      |
| Holmium Test                           | Tests <sup>1</sup>       | Tests <sup>1</sup>   | Diagnosis <sup>1</sup>   |
| Cell Test                              | Tests <sup>1</sup>       | Tests <sup>1</sup>   | n/a                      |
| D/A Converter Test                     | Tests <sup>1</sup>       | Tests <sup>1</sup>   | n/a                      |
| Dark Current Test                      | Tests <sup>1</sup>       | Tests <sup>1</sup>   | n/a                      |
| Filter / Grating Motor Test            | Tests <sup>1</sup>       | Tests <sup>1</sup>   | n/a                      |
| Test Chromatogram                      | Tools                    | from command<br>line | n/a                      |
| Spectrum (Blank, Sample, Holmium)      | Tools                    | n/a                  | n/a                      |

## Table 12 Available Tests versus Interface

<sup>1</sup> interface provides passed/fail information or a plot

6 Troubleshooting and Diagnostics Agilent Lab Advisor Software

## Agilent Lab Advisor Software

The Agilent Lab Advisor software is a standalone product that can be used with or without data system. Agilent Lab Advisor software helps to manage the lab for high quality chromatographic results and can monitor in real time a single Agilent LC or all the Agilent GCs and LCs configured on the lab intranet.

Agilent Lab Advisor software provides diagnostic capabilities for all Agilent 1200 Infinity Series modules. This includes diagnostic capabilities, calibration procedures and maintenance routines for all the maintenance routines.

The Agilent Lab Advisor software also allows users to monitor the status of their LC instruments. The Early Maintenance Feedback (EMF) feature helps to carry out preventive maintenance. In addition, users can generate a status report for each individual LC instrument. The tests and diagnostic features as provided by the Agilent Lab Advisor software may differ from the descriptions in this manual. For details refer to the Agilent Lab Advisor software help files.

The Instrument Utilities is a basic version of the Lab Advisor with limited functionality required for installation, use and maintenance. No advanced repair, troubleshooting and monitoring functionality is included.



# **Error Information**

7

What Are Error Messages 86 General Error Messages 87 Timeout 87 Shutdown 88 Remote Timeout 88 Lost CAN Partner 89 Leak 90 Leak Sensor Open 90 Leak Sensor Short 91 **Compensation Sensor Open** 91 Compensation Sensor Short 92 Fan Failed 92 Open Cover 93 **Detector Error Messages** 94 UV lamp: no current 94 UV lamp: no voltage 94 Ignition Failed 95 No heater current 96 Wavelength calibration setting failed 97 Wavelength holmium check failed 98 Grating or Filter Motor Errors 98 Wavelength test failed 99 Cutoff filter doesn't decrease the light intensity at 250 nm 100 ADC Hardware Error 100 Cover Violation 101

This chapter describes the meaning of detector error messages, and provides information on probable causes and suggested actions how to recover from error conditions.



# What Are Error Messages

Error messages are displayed in the user interface when an electronic, mechanical, or hydraulic (flow path) failure occurs which requires attention before the analysis can be continued (for example, repair, or exchange of consumables is necessary). In the event of such a failure, the red status indicator at the front of the module is switched on, and an entry is written into the module logbook.

If an error occurs outside a method run, other modules will not be informed about this error. If it occurs within a method run, all connected modules will get a notification, all LEDs get red and the run will be stopped. Depending on the module type, this stop is implemented differently. For example, for a pump the flow will be stopped for safety reasons. For a detector, the lamp will stay on in order to avoid equilibration time. Depending on the error type, the next run can only be started, if the error has been resolved, for example liquid from a leak has been dried. Errors for presumably single time events can be recovered by switching on the system in the user interface.

Special handling is done in case of a leak. As a leak is a potential safety issue and may have occurred at a different module from where it has been observed, a leak always causes a shutdown of all modules, even outside a method run.

In all cases, error propagation is done via the CAN bus or via an APG remote cable (see documentation for the APG interface).

# **General Error Messages**

General error messages are generic to all Agilent 1200 Infinity Series modules.

## Timeout

#### Error ID: 0062

The timeout threshold was exceeded.

#### **Probable cause**

- The analysis was completed successfully, and the timeout function switched off the module as requested.
- 2 A not-ready condition was present during a sequence or multiple-injection run for a period longer than the timeout threshold.

#### Suggested actions

Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.

Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.

## Shutdown

#### Error ID: 0063

An external instrument has generated a shutdown signal on the remote line.

The module continually monitors the remote input connectors for status signals. A LOW signal input on pin 4 of the remote connector generates the error message.

Suggested actions

## Probable cause

| 1 | Leak detected in another module with a CAN connection to the system.            | Fix the leak in the external instrument before restarting the module.                                                                                           |
|---|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Leak detected in an external instrument with a remote connection to the system. | Fix the leak in the external instrument before restarting the module.                                                                                           |
| 3 | Shut-down in an external instrument with a remote connection to the system.     | Check external instruments for a shut-down condition.                                                                                                           |
| 4 | The degasser failed to generate sufficient vacuum for solvent degassing.        | Check the vacuum degasser for an error<br>condition. Refer to the <i>Service Manual</i> for the<br>degasser or the 1260 pump that has the<br>degasser built-in. |

## **Remote Timeout**

#### Error ID: 0070

A not-ready condition is still present on the remote input. When an analysis is started, the system expects all not-ready conditions (for example, a not-ready condition during detector balance) to switch to run conditions within one minute of starting the analysis. If a not-ready condition is still present on the remote line after one minute the error message is generated.

| Probable cause |                                                                             | Suggested actions                                                                                                   |  |
|----------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| 1              | Not-ready condition in one of the instruments connected to the remote line. | Ensure the instrument showing the not-ready condition is installed correctly, and is set up correctly for analysis. |  |
| 2              | Defective remote cable.                                                     | Exchange the remote cable.                                                                                          |  |
| 3              | Defective components in the instrument showing the not-ready condition.     | Check the instrument for defects (refer to the instrument's documentation).                                         |  |

## **Lost CAN Partner**

## Error ID: 0071

During an analysis, the internal synchronization or communication between one or more of the modules in the system has failed.

The system processors continually monitor the system configuration. If one or more of the modules is no longer recognized as being connected to the system, the error message is generated.

#### **Probable cause**

#### **Suggested actions**

correctly.

- 1 CAN cable disconnected. Ensure all the CAN cables are connected
  - Ensure all CAN cables are installed correctly.
- **2** Defective CAN cable. Exchange the CAN cable.
- 3 Defective main board in another module. Switch off the system. Restart the system, and determine which module or modules are not recognized by the system.

General Error Messages

## Leak

## Error ID: 0064

A leak was detected in the module.

The signals from the two temperature sensors (leak sensor and board-mounted temperature-compensation sensor) are used by the leak algorithm to determine whether a leak is present. When a leak occurs, the leak sensor is cooled by the solvent. This changes the resistance of the leak sensor which is sensed by the leak-sensor circuit on the main board.

| Probable cause |                    | Suggested actions               |
|----------------|--------------------|---------------------------------|
| 1              | Loose fittings.    | Ensure all fittings are tight.  |
| 2              | Broken capillary.  | Exchange defective capillaries. |
| 3              | Leaking flow cell. | Exchange flow cell components.  |

# Leak Sensor Open

## Error ID: 0083

The leak sensor in the module has failed (open circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak-sensor current to change within defined limits. If the current falls outside the lower limit, the error message is generated.

| Pro | bbable cause                                                        | Suggested actions                                   |
|-----|---------------------------------------------------------------------|-----------------------------------------------------|
| 1   | Leak sensor not connected to the main board.                        | Please contact your Agilent service representative. |
| 2   | Defective leak sensor.                                              | Please contact your Agilent service representative. |
| 3   | Leak sensor incorrectly routed, being pinched by a metal component. | Please contact your Agilent service representative. |

## Leak Sensor Short

#### Error ID: 0082

The leak sensor in the module has failed (short circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak sensor current to change within defined limits. If the current increases above the upper limit, the error message is generated.

| Pro | bbable cause                                                        | Suggested actions                                   |
|-----|---------------------------------------------------------------------|-----------------------------------------------------|
| 1   | Defective leak sensor.                                              | Please contact your Agilent service representative. |
| 2   | Leak sensor incorrectly routed, being pinched by a metal component. | Please contact your Agilent service representative. |

## **Compensation Sensor Open**

#### Error ID: 0081

The ambient-compensation sensor (NTC) on the main board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor increases above the upper limit, the error message is generated.

#### Probable cause

#### Suggested actions

1 Defective main board.

Please contact your Agilent service representative.

## **Compensation Sensor Short**

#### Error ID: 0080

The ambient-compensation sensor (NTC) on the main board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor falls below the lower limit, the error message is generated.

#### **Probable cause**

#### Suggested actions

**1** Defective main board.

Please contact your Agilent service representative.

## **Fan Failed**

#### Error ID: 0068

The cooling fan in the module has failed.

The hall sensor on the fan shaft is used by the main board to monitor the fan speed. If the fan speed falls below a certain limit for a certain length of time, the error message is generated.

This limit is given by 2 revolutions/second for longer than 5 seconds.

Depending on the module, assemblies (e.g. the lamp in the detector) are turned off to assure that the module does not overheat inside.

| Probable cause |                         | Suggested actions                                   |
|----------------|-------------------------|-----------------------------------------------------|
| 1              | Fan cable disconnected. | Please contact your Agilent service representative. |
| 2              | Defective fan.          | Please contact your Agilent service representative. |
| 3              | Defective main board.   | Please contact your Agilent service representative. |

## **Open Cover**

#### Error ID: 0205

The top foam has been removed.

The sensor on the main board detects when the top foam is in place. If the foam is removed during operation, the lamp and grating drive power is switched off, and the error message is generated.

**Suggested actions** 

#### **Probable cause**

| 1 | The top foam was removed during operation. | Please contact your Agilent service representative. |
|---|--------------------------------------------|-----------------------------------------------------|
| 2 | Foam not activating the sensor.            | Please contact your Agilent service representative. |
| 3 | Defective sensor or main board.            | Please contact your Agilent service representative. |

7 Error Information Detector Error Messages

## **Detector Error Messages**

These errors are detector specific.

## **UV lamp: no current**

#### Error ID: 7450

The lamp anode current is missing. The processor continually monitors the anode current drawn by the lamp during operation. If the anode current falls below the lower current limit, the error message is generated.

| Pr | obable cause                       | Suggested actions                                   |
|----|------------------------------------|-----------------------------------------------------|
| 1  | Lamp disconnected.                 | Ensure the lamp connector is seated firmly          |
| 2  | Top foam removed while lamp is on. | Please contact your Agilent service representative. |
| 3  | Defective or non-Agilent lamp.     | Exchange the lamp.                                  |
| 4  | Defective main board.              | Please contact your Agilent service representative. |
| 5  | Defective power supply.            | Please contact your Agilent service representative. |

## UV lamp: no voltage

#### Error ID: 7451

The lamp anode voltage is missing. The processor continually monitors the anode voltage across the lamp during operation. If the anode voltage falls below the lower limit, the error message is generated.

| Probable cause |                                | Suggested actions                                   |  |
|----------------|--------------------------------|-----------------------------------------------------|--|
| 1              | Defective or non-Agilent lamp. | Exchange the lamp.                                  |  |
| 2              | Defective power supply.        | Please contact your Agilent service representative. |  |
| 3              | Defective main board.          | Please contact your Agilent service representative. |  |

## **Ignition Failed**

#### Error ID: 7452

The lamp failed to ignite. The processor monitors the lamp current during the ignition cycle. If the lamp current does not rise above the lower limit within 2 - 5 s, the error message is generated.

| Probable cause |                                | Suggested actions                                   |  |
|----------------|--------------------------------|-----------------------------------------------------|--|
| 1              | Lamp disconnected.             | Ensure the lamp is connected.                       |  |
| 2              | Defective or non-Agilent lamp. | Exchange the lamp.                                  |  |
| 3              | Defective power supply.        | Please contact your Agilent service representative. |  |
| 4              | Defective main board.          | Please contact your Agilent service representative. |  |

## No heater current

## Error ID: 7453

The lamp heater current in the detector is missing. During lamp ignition, the processor monitors the heater current. If the current does not rise above the lower limit within 1, the error message is generated.

| Probable cause |                                                 | Suggested actions                                   |  |
|----------------|-------------------------------------------------|-----------------------------------------------------|--|
| 1              | Lamp disconnected.                              | Ensure the lamp is connected.                       |  |
| 2              | lgnition started without the top foam in place. | Please contact your Agilent service representative. |  |
| 3              | Fan not running (permitting lamp on).           | Please contact your Agilent service representative. |  |
| 4              | Defective main board.                           | Please contact your Agilent service representative. |  |
| 5              | Defective or non-Agilent lamp.                  | Exchange the lamp.                                  |  |
| 6              | Defective power supply.                         | Please contact your Agilent service representative. |  |

# Wavelength calibration setting failed

## Error ID: 7310

The intensity maximum was not found during wavelength calibration.

| ( | Calibration O Failed:                             | Zero-order calibration failed.                                                                        |
|---|---------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| ( | Calibration 1 Failed:                             | 656 nm calibration failed.                                                                            |
|   |                                                   |                                                                                                       |
| F | Probable cause                                    | Suggested actions                                                                                     |
| 1 | Lamp is OFF.                                      | Switch on the lamp.                                                                                   |
| 2 | Incorrect flow cell installation.                 | Ensure the flow cell is installed correctly.                                                          |
| 3 | Flow cell contamination or air bubbles.           | Clean/replace flow cell windows or remove air bubbles.                                                |
| 4 | Intensity too low.                                | Replace lamp.                                                                                         |
| Ę | <b>i</b> Current step value too far from maximum. | <ul><li>Repeat the calibration.</li><li>Please contact your Agilent service representative.</li></ul> |
| e | Misaligned/defective grating assembly.            | Please contact your Agilent service representative.                                                   |
| 7 | Defective main board.                             | Please contact your Agilent service representative.                                                   |

## Wavelength holmium check failed

#### Error ID: 7318

The holmium oxide test in the detector has failed. During the holmium test, the detector moves the holmium filter into the light path, and compares the measured absorbance maxima of the holmium oxide filter with expected maxima. If the measured maxima are outside the limits, the error message is generated.

#### **Probable cause**

**1** Misaligned/defective grating assembly.

#### Suggested actions

- Ensure the flow cell is inserted correctly, and is free from contamination (cell windows, buffers, and so on).
- Run the filter-motor test to determine if the filter motor assembly is defective. If defective, please contact your Agilent service representative.
- Run the grating-motor test to determine if the grating assembly is defective. If defective, please contact your Agilent service representative.

## **Grating or Filter Motor Errors**

Error ID: Grating: 7800, 7801, 7802, 7803, 7804, 7805, 7806, 7808, 7809; Filter: 7810, 7811, 7812, 7813, 7814, 7815, 7816

The motor test has failed.

**Test 0 Failed:** 

Filter motor.

Test 1 Failed:

Grating motor.

During the motor tests, the detector moves the motor to the end position while monitoring the end-position sensor. If the end position is not found, the error message is generated.

| Probable cause |                                      | Suggested actions                                   |  |
|----------------|--------------------------------------|-----------------------------------------------------|--|
| 1              | Motor is not connected.              | Please contact your Agilent service representative. |  |
| 2              | Defective motor.                     | Please contact your Agilent service representative. |  |
| 3              | Defective/missing grating or filter. | Please contact your Agilent service representative. |  |
| 4              | Cable/connector defective.           | Please contact your Agilent service representative. |  |

## Wavelength test failed

#### Error ID: 7890

The automatic wavelength check after lamp ignition has failed. When the lamp is switched on, the detector waits 1 min to warm-up the lamp. Then a check of the deuterium emission line (656 nm) via the reference diode is performed. If the emission line is more than 3 nm away from 656 nm, the error message is generated.

#### **Probable cause**

#### **Suggested actions**

1 Calibration incorrect.

Recalibrate the detector.

## Cutoff filter doesn't decrease the light intensity at 250 nm

#### Error ID: 7813

The automatic filter check after lamp ignition has failed. When the lamp is switched on, the detector moves the cutoff filter into the light path. If the filter is functioning correctly, a decrease in lamp intensity is seen. If the expected intensity decrease is not detected, the error message is generated.

| Probable cause |                                      | Suggested actions                                   |  |
|----------------|--------------------------------------|-----------------------------------------------------|--|
| 1              | Motor is not connected.              | Please contact your Agilent service representative. |  |
| 2              | Defective motor.                     | Please contact your Agilent service representative. |  |
| 3              | Defective/missing grating or filter. | Please contact your Agilent service representative. |  |
| 4              | Cable/connector defective.           | Please contact your Agilent service representative. |  |

## **ADC Hardware Error**

#### Error ID: 7830, 7831

A/D-Converter hardware is defective.

| Probable cause |                                      | Suggested actions                                   |  |
|----------------|--------------------------------------|-----------------------------------------------------|--|
| 1              | A/D-Converter hardware is defective. | Please contact your Agilent service representative. |  |

## **Cover Violation**

## Error ID: 7461

The top foam has been removed.

The sensor on the main board detects when the top foam is in place. If the foam is removed while the lamps are on (or if an attempt is made to switch on for example the lamps with the foam removed), the lamps are switched off, and the error message is generated.

representative.

# Probable causeSuggested actions1 The top foam was removed during<br/>operation.Please contact your Agilent service<br/>representative.2 Foam not activating the sensor.Please contact your Agilent service

## 7 Error Information

**Detector Error Messages** 



# **Test Functions**

8

Intensity Test 104 Intensity Test Failed 105 Cell Test 106 Wavelength Verification-Calibration 108 ASTM Drift and Noise Test 110 Quick Noise Test 111 Dark Current Test 112 Dark Current Test Failed 113 Holmium Oxide Test 114 Holmium Oxide Test Failed 116

This chapter describes the detector's built in test functions.



# **Intensity Test**

The intensity test measures the intensity of the deuterium lamp over the full VWD wavelength range (190 – 600 nm). The test can be used to determine the performance of the lamp, and to check for dirty or contaminated flow cell windows. When the test is started, the gain is set to zero. To eliminate effects due to absorbing solvents, the test should be done with water in the flow cell. The shape of the intensity spectrum is primarily dependent on the lamp, grating, and diode characteristics. Therefore, intensity spectra will differ slightly between instruments. Figure 33 on page 105 shows a typical intensity test spectrum.

The Intensity Test is available in

- Agilent Lab Advisor (preferred)
- Agilent ChemStation
- Agilent Instant Pilot G4208A, via More-Diagnosis-VWD-Lamp Intensity Test

## **Intensity Test Evaluation**

The Agilent Lab Advisor and the Instant Pilot evaluate three values automatically and display the limits for each value, the average, the minimum and the maximum of all data points and **passed** or **failed** for each value.

#### The test scans the Intensity spectrum generated by the UV Test Name Intensity Test Description Lamp. Module G1314C:JP92110261 Passed Status Start Time 6/9/2010 11:44:10 AM 6/9/2010 11:44:49 AM Stop Time Test Procedure -Result Value Name 1. Check Prerequisites.. V Accumulated UV Lamp Burn Time 177.67 h V 2. Perform Intensity Test. UV Lamp On-Time 1.34 h Lowest Intensity 1,028 Counts 3. Evaluate Data... Average Intensity 31,577 Counts Highest Intensity 233,087 Counts Intensity Spectrum Intensity [Counts] 2.3309E+05 2E+05 1.5E+05 1E+05 50000 1028 190 300 400 500 600 700 800 Wavelength [nm]

## Instensity Test with Agilent Lab Advisor

Figure 33 Intensity Test with Agilent Lab Advisor

## **Intensity Test Failed**

#### **Probable cause**

**3** Optics defect

2 Flow cell windows dirty

- **1** Empty flow cell Ensure the flow cell is filled with water.
  - Repeat the test with the flow cell removed. If the test passes, exchange the flow cell windows.
  - Please contact your Agilent service representative.

**Suggested actions** 

4 Defective lamp or optics. Exchange the lamp.

8 Test Functions Cell Test

# **Cell Test**

The cell test compares the intensity of the deuterium lamp measured by the sample and reference diodes (unfiltered and not logarithmized) when the grating is in the zero-order position. The resulting intensity ratio (sample:reference) is a measure of the amount of light absorbed by the flow cell.

The test can be used to check for dirty or contaminated flow cell windows. When the test is started, the gain is set to -1. To eliminate effects due to absorbing solvents, the test should be done with water in the flow cell.

Limits: No real limit. The reason is that it depends on the position/alignment of the reference side (beam splitter – reference slit – reference diode). Therefore the reference side value can be higher/smaller than the sample side value.

With a clean cell the counts for sample and reference (photocurrent) are in the same range. If the sample side shows much lower values than the reference side the flow cell might have a problem.

Pre-requisite:

Flush the flow cell with a flow of 1 mL/min for at least 10 minutes.

| Probable Cause                | Suggested Action           |
|-------------------------------|----------------------------|
| Cell contaminated             | Flush flow cell            |
| Cell windows are contaminated | Clean/replace cell windows |
| Mechanical problem            | Check cell position        |

In the Agilent Instant Pilot G4208A, the photocurrent readings are available via **More > Diagnosis > VWD > LampIntensity Test**, see Figure 35 on page 107.



| les    | t Name                                | Cell Test                                                                        | Description                                        | Calculate the ratio of the sample                                         | signal and the reference signal,                               |
|--------|---------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------|
| Mod    | lule                                  | G1314C:DE60555128                                                                |                                                    | measured in the zero order of the                                         | grating.                                                       |
| Sta    | tus                                   | Passed                                                                           |                                                    |                                                                           |                                                                |
| Sta    | rt Time                               | 7/6/2011 1:24:55 PM                                                              |                                                    |                                                                           |                                                                |
| Sto    | p Time                                | 7/6/2011 1:26:18 PM                                                              |                                                    |                                                                           |                                                                |
|        |                                       |                                                                                  |                                                    |                                                                           |                                                                |
| Test   | Procedur                              | e                                                                                | Result                                             |                                                                           |                                                                |
| Test   | Procedur                              | e                                                                                | Result                                             | Name                                                                      | Value                                                          |
| Test   | Procedur<br>1. Ch                     | e<br>eck Prerequisites                                                           | Result                                             | Name<br>Ilated UV Lamp Burn Time                                          | Value<br>60.49 h                                               |
| Test   | Procedur<br>1. Ch<br>2. Flu           | e<br>eck Prerequisites<br>ish Flow Cell.                                         | Result<br>Accumu<br>UV Larr                        | Name<br>Ilated UV Lamp Burn Time<br>Ip On-Time                            | Value<br>60.49 h<br>4.36 h                                     |
| Test   | Procedur<br>1. Ch<br>2. Flu<br>3. Me  | e<br>eck Prerequisites<br>ish Row Cell.<br>assure Sample and Reference Intensity | Result<br>Accumu<br>UV Lam<br>Intensit             | Name<br>Ilated UV Lamp Burn Time<br>Ip On-Time<br>y Sample                | Value<br>60.49 h<br>4.36 h<br>241,908 Counts                   |
| - Test | Procedur<br>1. Chr<br>2. Flu<br>3. Me | e<br>eck Prerequisites<br>ish Row Cell.<br>sasure Sample and Reference Intensity | Result<br>Accumu<br>UV Lan<br>Intensit<br>Intensit | Name<br>ulated UV Lamp Burn Time<br>up On-Time<br>y Sample<br>y Reference | Value<br>60.49 h<br>4.36 h<br>241,908 Counts<br>422,625 Counts |

. . . . .

.....



. ...

- - -

## **Checking the Photocurrent with the Instant Pilot**



Figure 35 Checking the Photocurrent with the Instant Pilot

8 Test Functions

NOTE

Wavelength Verification-Calibration

# Wavelength Verification-Calibration

Wavelength calibration of the detector is done using the zero-order position and 656 nm emission line position of the deuterium lamp. The calibration procedure involves two steps. First the grating is calibrated on the zero-order position. The stepper-motor step position where the zero-order maximum is detected is stored in the detector. Next, the grating is calibrated against the deuterium emission-line at 656 nm, and the motor position at which the maximum occurs is stored in the detector.

In addition to the zero-order and 656 nm (alpha-emission line) calibration, the beta-emission line at 486 nm and the three holmium lines are used for the complete wavelength calibration process. These holmium lines are at 360.8 nm, 418.5 nm and 536.4 nm.

The wavelength verification/calibration takes about 2.5 min and is disabled within the first 10 min after ignition of the lamp because initial drift may distort the measurement.

When the lamp is turned **ON**, the 656 nm emission line position of the deuterium lamp is checked automatically.

The Wavelength Verification/Calibration is available in

- · Agilent Lab Advisor (preferred tool).
- Agilent Instant Pilot G4208A, via More-Diagnosis-VWD-Calibration.

## When to Calibrate the Detector

The detector is calibrated at the factory, and under normal operating conditions should not require recalibration. However, it is advisable to recalibrate:

- after maintenance (flow cell or lamp),
- · after repair of components in the optical unit,
- · after exchange of the optical unit or VWM board,
- at a regular interval, at least once per year (for example, prior to an Operational Qualification/Performance Verification procedure), and
- when chromatographic results indicate the detector may require recalibration.
| Fest Name<br>Module           | Wavelength Calibration<br>G1314C:JP92110261 | <b>Description</b> This proc<br>Recalibra    | edure performs a Wavelength<br>tion. | Verification and     |
|-------------------------------|---------------------------------------------|----------------------------------------------|--------------------------------------|----------------------|
| Approx. Time<br>Status        | 3 min<br><b>Running</b>                     |                                              |                                      |                      |
|                               |                                             |                                              |                                      |                      |
| Test Procedure —              |                                             | Result                                       |                                      |                      |
| 4                             |                                             |                                              | Name                                 | Value                |
| 1. Uheck I                    | rerequisites                                | Accumulated UV I                             | ∟amp Burn Time                       | 32.41 h              |
| 🖊 2. Wavele                   | ngth Verification                           | UV Lamp On-Time                              | 3                                    | 0.36 h               |
| 🔖 3. Calibrati                | e Detector                                  | Time to Wait Befo                            | re Wavelength Calibration            | 0.00 min             |
|                               |                                             | Wavelength Gap                               | of previous 0-order Calibra          | -0.200 nm            |
|                               |                                             | Maximum Wavele                               | ngth Gap of previous Calib           | -0.200 nm            |
|                               |                                             | Wavelength Gap                               | of 0-order Calibration               | 0.400 nm             |
|                               |                                             | Maximum Wavele                               | ngth Gap of Calibration              | 0.300 nm             |
| Test Name<br>Module           | Wavelength Calibration<br>G1314CJP92110261  | Yes No<br>Description This proc<br>Recalibre | edure performs a Wavelength<br>tion. | Verification and     |
|                               | C/2/2010 2:12:42 DM                         |                                              |                                      |                      |
|                               | 6/2/2010 3:12:43 PM                         |                                              |                                      |                      |
| stop lime                     | 67272010 3:21:33 PM                         |                                              |                                      |                      |
| Test Procedure —              |                                             | Result                                       |                                      |                      |
|                               |                                             |                                              | Name                                 | Value                |
| 1. Uheck I                    | rrerequisites                               | Accumulated UV                               | _amp Burn Time                       | 32.41 h              |
| 2. Wavele                     | ngth Verification                           | UV Lamp On-Time                              | 1                                    | 0.36 h               |
| <ol> <li>Calibrati</li> </ol> | e Detector                                  | Time to Wait Befo                            | re Wavelength Calibration            | 0.00 min             |
|                               |                                             | Wavelength Gap                               | of previous 0-order Calibra          | -0.200 nm            |
|                               |                                             | Maximum Wavele                               | ngth Gap of previous Calib           | -0.200 nm            |
|                               |                                             |                                              | 10.1.0.0.1                           |                      |
|                               |                                             | Wavelength Gap                               | of U-order Calibration               | 0.400 nm             |
|                               |                                             | Maximum Wavele                               | of U-order Calibration               | 0.400 nm<br>0.300 nm |

## Wavelength Verification/Calibration with Agilent Lab Advisor

Figure 36 Wavelength Verification and Calibration (Agilent Lab Advisor)

# **ASTM Drift and Noise Test**

The ASTM Drift and Noise test determines the detector noise over a period of 20 min. The test is done with HPLC-grade water flowing through the flow cell at 1 mL/min. On completion of the test, the noise result is displayed automatically.

| Test Name<br>Module<br>Status<br>Start Time<br>Stop Time | ASTM Drift and Noise Test<br>G1314CJP92110261<br><b>Passed</b><br>6/9/2010 12:13:54 PM<br>6/9/2010 12:34:04 PM | Description               | The test performs ASTN<br>reference.                                                                                 | 1 Drift and Noise e            | valuation without                                                                                               |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                          |                                                                                                                |                           |                                                                                                                      |                                |                                                                                                                 |
| I. Check F     2. Measure     3. Evaluat                 | Prerequisites<br>9 Noise<br>9 Data                                                                             | Acc<br>UV<br>Sig<br>Sig   | Name<br>:umulated UV Lamp Burn Tim<br>Lamp On-Time<br>nal Drift value at 254 nm (UV)<br>nal Noise value at 254 nm (U | ne                             | Value<br>178.16 h<br>1.83 h<br>0.043 mAU/h<br>0.006 mAU                                                         |
| Absorbance [mAU]                                         |                                                                                                                | UV Signal                 |                                                                                                                      |                                |                                                                                                                 |
| -1.2412 -<br>-1.245 -<br>-1.255 -<br>-1.255 -            | uluntun un u                                                                  | nurrananan                | haleyeran New Mar                                                                                                    | N <sup>A</sup> fridadiana<br>N | haddladd yw a safel a s |
| 0                                                        | 2 4 6                                                                                                          | ' '<br>8 10<br>Time [min] | 12 14                                                                                                                | 16                             | 18 19.996                                                                                                       |

Figure 37 ASTM Drift and Noise Test (Agilent Lab Advisor)

## **Quick Noise Test**

The noise test measures the noise of the detector, with HPLC-grade water flowing through the flow cell at 1 mL/min, in one minute intervals over a total of 5 min.

The noise of the detector is calculated by using the maximum amplitude for all random variations of the detector signal of frequencies greater than one cycle per hour. The noise is determined for 5 one minute intervals and is based on the accumulated peak-to-peak noise for the intervals. At least seven data points per cycles are used in the calculation.

The cycles in the noise determination are not overlapping.

In order to obtain reliable results, the lamp should be turned on for at least 10 min prior to measurement.



Figure 38 Quick Noise Test (Agilent Lab Advisor)

8 Test Functions Dark Current Test

## **Dark Current Test**

The dark-current test measures the leakage current from the sample and reference circuits. The test is used to check for defective sample or reference diodes or ADC circuits which may cause non-linearity or excessive baseline noise. During the test, the lamp is switched off. Next, the leakage current from both diodes is measured.



Figure 39 Dark Current Test (Agilent Lab Advisor)

## **Dark Current Test Failed**

| Pre | bbable cause                             | Suggested actions                                   |
|-----|------------------------------------------|-----------------------------------------------------|
| 1   | Defective sample or reference diode.     | Please contact your Agilent service representative. |
| 2   | Defective sample or reference ADC board. | Please contact your Agilent service representative. |
| 3   | Defective main board.                    | Please contact your Agilent service representative. |

## **Holmium Oxide Test**

This test verifies the calibration of the detector against the three wavelength maxima of the built-in holmium oxide filter. The test displays the difference between the expected and measured maxima. The figure below shows a holmium test spectrum.

The Holmium Oxide Test is available in

- Agilent Lab Advisor (preferred tool).
- Agilent Instant Pilot G4208A, via More-Diagnosis-VWD-Holmium Spectrum Test.

The test uses the following holmium maxima:

- 360.8 nm
- 418.5 nm
- 536.4 nm

NOTE

See also "Declaration of Conformity for HOX2 Filter" on page 201.

## When to do the Test

- after recalibration,
- as part of the Operational Qualification/Performance Verification procedure, or
- · after flow cell maintenance or repair.

## **Interpreting the Results**

The test is passed successfully when all three wavelengths are within  $\pm 1$  nm of the expected value. This indicates the detector is calibrated correctly.

## NOTE

ChemStation revisions below B.01.xx show a limit of  $\pm 2$  nm. It should read  $\pm 1$  nm. If the test shows a value greater than  $\pm 1$  nm, perform a recalibration.



## **Running the test with Agilent Lab Advisor**

Figure 40 Holmium Test with Agilent Lab Advisor

# Holmium Oxide Test Failed

| Pr | obable cause                             | Suggested actions                                                                                       |
|----|------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 1  | Detector not calibrated.                 | Recalibrate the detector.                                                                               |
| 2  | Dirty or defective flow cell.            | Repeat the test with the flow cell removed. If<br>the test is OK, exchange the flow cell<br>components. |
| 3  | Dirty or defective holmium oxide filter. | Run the holmium oxide filter test. If the test fails, contact your Agilent service representative.      |
| 4  | Optical misalignment.                    | Please contact your Agilent service representative.                                                     |



Introduction to Maintenance 118 Warnings and Cautions 119 Overview of Maintenance 121 Cleaning the Module 122 Exchanging a Lamp 123 Exchanging a Flow Cell 126 Repairing the Flow Cells 128 Using the Cuvette Holder 130 Correcting Leaks 132 Replacing Leak Handling System Parts 133 Replacing the Interface Board 134 Replacing the Module's Firmware 135

This chapter provides general information on maintenance and repair of the detector.



## Introduction to Maintenance

The module is designed for easy maintenance. Maintenance can be done from the front with module in place in the system stack.

**NOTE** There are no serviceable parts inside. Do not open the module.

## Warnings and Cautions

## WARNING

## Toxic, flammable and hazardous solvents, samples and reagents

#### The handling of solvents, samples and reagents can hold health and safety risks.

- → When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- The volume of substances should be reduced to the minimum required for the analysis.
- → Do not operate the instrument in an explosive atmosphere.

## WARNING Eye damage by detector light

## Þ

Eye damage may result from directly viewing the UV-light produced by the lamp of the optical system used in this product.

→ Always turn the lamp of the optical system off before removing it.

## WARNING

#### **Electrical shock**

Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened.

- → Do not remove the cover of the module.
- → Only certified persons are authorized to carry out repairs inside the module.

Warnings and Cautions

# WARNING Personal injury or damage to the product Agilent is not responsible for any damages caused, in whole or in part, by improper use of the products, unauthorized alterations, adjustments or modifications to the products, failure to comply with procedures in Agilent product user guides, or use of the products in violation of applicable laws, rules or regulations. • Use your Agilent products only in the manner described in the Agilent product user guides. CAUTION Safety standards for external equipment • If you connect external equipment to the instrument, make sure that you only use accessory units tested and approved according to the safety standards appropriate for the type of external equipment.

# **Overview of Maintenance**

The following pages describe maintenance (simple repairs) of the detector that can be carried out without opening the main cover.

| Procedures                                          | Typical Frequency                                                              | Notes                                                  |
|-----------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------|
| Deuterium lamp<br>exchange                          | If noise and/or drift exceeds your application limits or lamp does not ignite. | A VWD test should be performed after replacement.      |
| Flow cell exchange                                  | If application requires a different flow cell type.                            | A VWD test should be performed after replacement.      |
| Cleaning flow cell<br>parts cleaning or<br>exchange | If leaking or if intensity drops due to contaminated flow cell windows.        | A pressure tightness test should be done after repair. |
| Leak sensor drying                                  | If leak has occurred.                                                          | Check for leaks.                                       |
| Leak handling system replacement                    | If broken or corroded.                                                         | Check for leaks.                                       |

## Table 13Simple Repairs

# **Cleaning the Module**

To keep the module case clean, use a soft cloth slightly dampened with water, or a solution of water and mild detergent.

# **WARNING** Liquid dripping into the electronic compartment of your module can cause shock hazard and damage the module

- → Do not use an excessively damp cloth during cleaning.
- → Drain all solvent lines before opening any connections in the flow path.

# **Exchanging a Lamp**

| When           | If noise or drift exceeds application limits or lamp does not ignite                                |                                                                                                                                                                                           |  |
|----------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Tools required | <b>Description</b><br>Screwdriver, Pozid                                                            | riv #1 PT3                                                                                                                                                                                |  |
| Parts required | <b>p∕n</b><br>G1314-60100                                                                           | Description<br>Deuterium lamp                                                                                                                                                             |  |
| Preparations   | Turn the lamp OFF.                                                                                  |                                                                                                                                                                                           |  |
| WARNING        | <b>VARNING</b> Injury by touching hot lamp<br>If the detector has been in use, the lamp may be hot. |                                                                                                                                                                                           |  |
|                | → If so, wait for                                                                                   | lamp to cool down.                                                                                                                                                                        |  |
| NOTE           | If you want to us<br>lamp settings in t<br>lamp's filament h                                        | e the Agilent DAD lamp instead of the VWD lamp, you have to change the<br>the VWD Configuration to lamp type 2140-0590. This ensures that the DAD<br>neating is operated like in the DAD. |  |
| NOTE           | The specification when other lamp                                                                   | are based on Deuterium lamp (G1314-60100) and may be not achieved types or aged lamps are used.                                                                                           |  |

**Exchanging a Lamp** 





Exchanging a Flow Cell

# **Exchanging a Flow Cell**

| When           | If an application needs a different type of flow cell or the flow c |                                       |                                                                  |  |  |
|----------------|---------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------|--|--|
| Tools required | Description                                                         |                                       |                                                                  |  |  |
|                | Wrer<br>for ca                                                      | nch, 1/4 inch<br>apillary connections |                                                                  |  |  |
| Parts required | #                                                                   | p/n                                   | Description                                                      |  |  |
|                | 1                                                                   | G1314-60186                           | Standard flow cell 10 mm, 14 μL, 40 bar<br>(with RFID tag)       |  |  |
| OR             | 1                                                                   | G1314-60187                           | Micro flow cell 3 mm, 2 µL, 120 bar<br>(with RFID tag)           |  |  |
| OR             | 1                                                                   | G1314-60183                           | Semi-micro flow cell 6 mm, 5 µL<br>(with RFID tag)               |  |  |
| OR             | 1                                                                   | G1314-60182                           | High pressure flow cell 10 mm, 14 µL, 400 bar<br>(with RFID tag) |  |  |

#### Preparations

Turn the lamp OFF.





**Repairing the Flow Cells** 

# **Repairing the Flow Cells**

| When           | If the flow cell needs repair due to leaks or contaminations.                                                                     |  |  |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Tools required | Description                                                                                                                       |  |  |  |  |
|                | Wrench, 1/4 inch                                                                                                                  |  |  |  |  |
|                | for capillary connections                                                                                                         |  |  |  |  |
|                | Wrench, 4 mm hexagonal                                                                                                            |  |  |  |  |
|                | Toothpick                                                                                                                         |  |  |  |  |
| Parts required | Description                                                                                                                       |  |  |  |  |
|                | See "Standard Flow Cell 10 mm / 14 µL" on page 139                                                                                |  |  |  |  |
|                | See "Micro Flow Cell 3 mm / 2 $\mu L^{\prime\prime}$ on page 142                                                                  |  |  |  |  |
|                | See "Micro Flow Cell, 5 mm / 1 $\mu L$ (only for support)" on page 140                                                            |  |  |  |  |
|                | See "Semi-micro Flow Cell 6 mm / 5 µL" on page 144                                                                                |  |  |  |  |
|                | See "High Pressure Flow Cell 10 mm / 14 $\mu L^{\prime\prime}$ on page 146                                                        |  |  |  |  |
| Preparations   | Turn off the flow.                                                                                                                |  |  |  |  |
| •              | Remove the front cover.                                                                                                           |  |  |  |  |
|                | • Remove the flow cell, see "Exchanging a Flow Cell" on page 126.                                                                 |  |  |  |  |
| NOTE           | The shown cell parts will differ depending upon the flow cell type. For detailed parts schematics, refer to above mentioned pages |  |  |  |  |
|                |                                                                                                                                   |  |  |  |  |
|                | Disassembling the Flow Cell                                                                                                       |  |  |  |  |
|                | 1 Unscrew the cell screw using a 4-mm hexagonal wrench.                                                                           |  |  |  |  |
|                | 2 Remove the SST rings using a pair of tweezers.                                                                                  |  |  |  |  |
| CAUTION        | Scratched window surfaces by tweezers                                                                                             |  |  |  |  |
|                | Window surfaces can easily be scratched by using tweezers for removing the windows.                                               |  |  |  |  |
|                | → Do not use tweezers to remove windows                                                                                           |  |  |  |  |
|                | <b>3</b> Use adhesive tape to remove the neek ring the window and the gasket                                                      |  |  |  |  |
|                | Panoat stan a through stan a far the other window drop the nexts.                                                                 |  |  |  |  |
|                | separate - otherwise they could be mixed!).                                                                                       |  |  |  |  |

#### **Cleaning the Flow Cell Parts**

- **1** Pour isopropanol into the cell hole and wipe clean with a piece of lint-free cloth.
- **2** Clean the windows with ethanol or methanol. Dry it with a piece of lint-free cloth.

## NOTE Always use new gaskets.

#### **Reassembling the Flow Cell**

**1** Hold the flow cell cassette horizontally and place gasket in position. Ensure both cell holes can be seen through the holes of gasket.

**NOTE** The semi-micro #1 and #2 gaskets (items 6 and 7, "Semi-micro Flow Cell 6 mm  $/ 5 \mu$ L" on page 144) look very similar. Do not mix them up.

- 2 Place the window on gasket.
- **3** Place the peek ring on the window.
- **4** Insert the conical springs. Make sure the conical springs point towards the window. Otherwise tightening the cell screw might break the window.

| Conical springs |  |
|-----------------|--|
|-----------------|--|

Ring - Window - Gasket - Arrangement

Figure 41 Orientation of conical springs

- 5 Screw the cell screw into the flow cell and tighten the screw.
- **6** Repeat the procedure for the other cell side.

#### Next steps

- **1** Reconnect the capillaries.
- 2 Perform a leak test. If OK, insert the flow cell.
- **3** Perform "Wavelength Verification- Calibration" on page 108 to check the correct positioning of the flow cell.
- **4** Replace the front cover.

# **Using the Cuvette Holder**

This cuvette holder can be placed instead of a flow cell in the variable wavelength detector. Standard cuvettes with standards in it, for example, National Institute of Standards & Technology (NIST) holmium oxide solution standard, can be fixed in it.

This can be used for wavelength verifications.



| When           | If your own standard should be used to checkout the instrument. |                                                                       | uld be used to checkout the instrument.                               |
|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|
| Parts required | #                                                               | p/n                                                                   | Description                                                           |
|                | 1                                                               | G1314-60200                                                           | Cuvette Holder                                                        |
|                | 1                                                               |                                                                       | Cuvette with the "standard", e.g. NIST certified holmium oxide sample |
| Preparations   | • F<br>• H                                                      | Remove the normal flow cell.<br>Have cuvette with standard available. |                                                                       |

**Using the Cuvette Holder** 





## **Correcting Leaks**

When If a leakage has occurred in the flow cell area or at the capillary connections.

Tools required Description

Tissue Wrench, 1/4 inch for capillary connections

- **1** Remove the front cover.
- 2 Use tissue to dry the leak sensor area.
- **3** Observe the capillary connections and the flow cell area for leaks and correct, if required.
- 4 Replace the front cover.



Leak sensor assembly

Figure 42 Drying the Leak Sensor

9

# **Replacing Leak Handling System Parts**

| When           | lf th      | If the parts are corroded or broken. |                                                      |  |
|----------------|------------|--------------------------------------|------------------------------------------------------|--|
| Tools required | Non        | e                                    |                                                      |  |
| Parts required | #          | p/n                                  | Description                                          |  |
|                | 1          | 5041-8389                            | Leak funnel holder                                   |  |
|                | 1          | 5041-8388                            | Leak funnel                                          |  |
|                | 1          | 5062-2463                            | Corrugated tubing, PP, 6.5 mm id, 5 m                |  |
|                | <b>1</b> F | Remove the fro                       | ont cover to have access to the leak handling system |  |
|                | <b>2</b> F | Pull the leak fu                     | unnel out of the leak funnel holder.                 |  |
|                | <b>3</b> I | Pull the leak fu                     | unnel with the tubing out of its location.           |  |
|                | <b>4</b> F | Replace the lea                      | k funnel and/or the tubing.                          |  |
|                | <b>5</b> I | nsert the leak                       | funnel with the tubing in its position.              |  |
|                | <b>6</b> I | nsert the leak                       | funnel into the leak funnel holder.                  |  |
|                | <b>7</b> F | Replace the fro                      | ont cover.                                           |  |



Figure 43 Replacing Waste Handling System Parts

**Replacing the Interface Board** 

# **Replacing the Interface Board**

| When           | When defective or for installation of the board or for all repairs inside the detector. |                          |                                                              |  |
|----------------|-----------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------|--|
| Parts required | #                                                                                       | p/n                      | Description                                                  |  |
|                | 1                                                                                       | G1351-68701              | Interface board (BCD) with external contacts and BCD outputs |  |
| OR             | 1                                                                                       | G1369B or<br>G1369-60002 | Interface board (LAN)                                        |  |
| OR             | 1                                                                                       | G1369C or<br>G1369-60012 | Interface board (LAN)                                        |  |



9

# **Replacing the Module's Firmware**

| When           | <ul> <li>The installation of newer firmware might be necessary</li> <li>if a newer version solves problems of older versions or</li> <li>to keep all systems on the same (validated) revision.</li> </ul>                                                                            |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                | <ul> <li>The installation of older firmware might be necessary</li> <li>to keep all systems on the same (validated) revision or</li> <li>if a new module with newer firmware is added to a system or</li> <li>if third party control software requires a special version.</li> </ul> |  |  |
| Tools required | Description                                                                                                                                                                                                                                                                          |  |  |
|                | LAN/RS-232 Firmware Update Tool                                                                                                                                                                                                                                                      |  |  |
| OR             | Agilent Lab Advisor software                                                                                                                                                                                                                                                         |  |  |
| OR             | Instant Pilot G4208A                                                                                                                                                                                                                                                                 |  |  |
|                | (only if supported by module)                                                                                                                                                                                                                                                        |  |  |
| Parts required | # Description                                                                                                                                                                                                                                                                        |  |  |
|                | 1 Firmware, tools and documentation from Agilent web site                                                                                                                                                                                                                            |  |  |
| Preparations   | Read update documentation provided with the Firmware Update Tool.                                                                                                                                                                                                                    |  |  |
|                | To upgrade/downgrade the module's firmware carry out the following steps:                                                                                                                                                                                                            |  |  |
|                | 1 Download the required module firmware, the latest LAN/RS-232 FW Update Tool and the documentation from the Agilent web.                                                                                                                                                            |  |  |
|                | <ul> <li>http://www.chem.agilent.com/_layouts/agilent/downloadFirmware.aspx?whid=69761</li> </ul>                                                                                                                                                                                    |  |  |
|                | <b>2</b> For loading the firmware into the module follow the instructions in the documentation.                                                                                                                                                                                      |  |  |

**Replacing the Module's Firmware** 

## Module Specific Information

## Table 14 Module Specific Information (G1314B/C)

|                                                  | G1314B VWD                       | G1314C VWD SL               |
|--------------------------------------------------|----------------------------------|-----------------------------|
| Initial firmware                                 | A.06.02                          | A.06.02                     |
| Compatibility with 1100 / 1200 series modules    | yes, all modules should have the | firmware from the same set. |
| Conversion to / emulation of<br>G1314A or G1314B | possible, if required            |                             |



# 10 Parts and Materials for Maintenance

Overview of Maintenance Parts 138 Standard Flow Cell 10 mm / 14 µL 139 Micro Flow Cell, 5 mm / 1 µL (only for support) 140 Micro Flow Cell 3 mm / 2 µL 142 Semi-micro Flow Cell 6 mm / 5 µL 144 High Pressure Flow Cell 10 mm / 14 µL 146 Cuvette Holder 148 Leak Parts 149 Kits 150

This chapter provides information on parts for maintenance.



10 Parts and Materials for Maintenance Overview of Maintenance Parts

**Overview of Maintenance Parts** 

| p/n                      | Description                                                      |
|--------------------------|------------------------------------------------------------------|
| 5181-1516                | CAN cable, Agilent module to module, 0.5 m                       |
| 5181-1519                | CAN cable, Agilent module to module, 1 m                         |
| G1351-68701              | Interface board (BCD) with external contacts and BCD outputs     |
| G1369C or<br>G1369-60012 | Interface board (LAN)                                            |
| G4208-67001              | Instant Pilot G4208A (requires firmware B.02.08 or above)        |
| G1314-60100              | Deuterium lamp                                                   |
| G1314-60186              | Standard flow cell 10 mm, 14 μL, 40 bar<br>(with RFID tag)       |
| G1314-60081              | Micro flow cell, 5 mm, 1 µL, 40 bar                              |
| G1314-60182              | High pressure flow cell 10 mm, 14 μL, 400 bar<br>(with RFID tag) |
| G1314-60183              | Semi-micro flow cell 6 mm, 5 μL<br>(with RFID tag)               |
| G1314-60187              | Micro flow cell 3 mm, 2 μL, 120 bar<br>(with RFID tag)           |
| G1314-60200              | Cuvette Holder                                                   |
| 5067-4691                | Front Panel DAD/VWD/FLD (1260/1290)                              |
|                          | Leak handling parts                                              |

For leak handling parts, see "Leak Parts" on page 149.

# Standard Flow Cell 10 mm / 14 $\mu L$

| ltem | p/n         | Description                                                              |
|------|-------------|--------------------------------------------------------------------------|
|      | G1314-60186 | Standard flow cell 10 mm, 14 μL, 40 bar<br>(with RFID tag)               |
|      | 5062-8522   | Capillary column - detector PEEK 600 mm lg, 0.17 mm i.d., 1/16 inch o.d. |
|      | G1314-65061 | Cell Repair Kit, includes 2x Gasket #1, 2x Gasket #2, 2x Window Quartz   |
| 1    | G1314-65062 | Cell screw kit                                                           |
| 2    | 79853-29100 | Conical spring kit, 10/pk                                                |
| 3    | G1314-65066 | Ring #2 kit (IN small hole, i.d. 1 mm) PEEK, 2/pk                        |
| 4    | G1314-65064 | Gaskets #2 IN (small hole i.d. 1 mm), KAPTON 10/pk                       |
| 5    | 79853-68742 | Window quartz kit, 2/pk                                                  |
| 6    | G1314-65063 | Gasket #1 kit (OUT large hole, i.d. 2.4 mm) KAPTON, 2/pk                 |
| 7    | G1314-65065 | Ring #1 kit (OUT large hole, i.d. 2.4 mm) PEEK, 2/pk                     |
| 8    | G1314-44010 | Clip for RFI ID tag                                                      |
| 9    | 0515-4780   | Screw for Clip, M2.2, 4.5 mm long                                        |



Figure 44 Standard Flow Cell

## **10** Parts and Materials for Maintenance

Micro Flow Cell, 5 mm / 1 µL (only for support)

# Micro Flow Cell, 5 mm / 1 $\mu$ L (only for support)

| ltem | p/n         | Description                                                                     |
|------|-------------|---------------------------------------------------------------------------------|
|      | G1314-60081 | Micro flow cell, 5 mm, 1 µL, 40 bar                                             |
|      | 5021-1823   | Capillary column – detector SST 400 mm lg, 0.12 mm i.d.                         |
| 1    | G1314-20047 | Cell screw                                                                      |
|      | G1314-65052 | Cell kit micro, comprises: two windows, two gaskets $\#1$ and two gaskets $\#2$ |
| 2    | 79853-29100 | Conical spring kit, 10/pk                                                       |
| 3    | 79853-22500 | Ring SST, 2/pk                                                                  |
| 5    | 79853-68742 | Window quartz kit, 2/pk                                                         |
| 4    | 79853-68743 | PTFE gasket (round hole i.d. 2.5 mm, o.d. 8 mm), (10/pk)                        |
| 6    | G1314-65053 | Gasket #2, PTFE, quantity=10                                                    |

#### Parts and Materials for Maintenance 10

Micro Flow Cell, 5 mm / 1 µL (only for support)





10 Parts and Materials for Maintenance Micro Flow Cell 3 mm / 2 μL

# Micro Flow Cell 3 mm / 2 $\mu L$

| ltem | p/n         | Description                                                                                                           |
|------|-------------|-----------------------------------------------------------------------------------------------------------------------|
|      | G1314-60187 | Micro flow cell 3 mm, 2 μL, 120 bar<br>(with RFID tag)                                                                |
|      | 5021-1823   | Capillary column – detector SST 400 mm lg, 0.12 mm i.d.                                                               |
| 1    | 79883-22402 | Window screw                                                                                                          |
| 2    | 5062-8553   | Washer kit (10/pk)                                                                                                    |
| 3    | 79883-28801 | Compression washer                                                                                                    |
| 4    | 79883-22301 | Window holder                                                                                                         |
| 5    | 1000-0488   | Quartz window                                                                                                         |
| 6    | G1315-68710 | Gasket FRONT (PTFE), 1.3 mm hole, inlet side (12/pk)                                                                  |
| 7    | 79883-68702 | Gasket BACK (PTFE), 1.8 mm hole, outlet side (12/pk)                                                                  |
| 8    | G1314-44010 | Clip for RFI ID tag                                                                                                   |
| 9    | 0515-4780   | Screw for Clip, M2.2, 4.5 mm long                                                                                     |
|      | G1314-87301 | Capillary IN (0.12 mm, 310 mm lg)                                                                                     |
|      | G1314-87302 | Capillary OUT (0.17 mm, 120 mm lg)                                                                                    |
|      | G1315-68713 | Cell repair kit semi-micro, includes window screw kit, Gasket Kit<br>BACK, Gasket Kit FRONT and 4 mm hexagonal wrench |
|      | 79883-68703 | Window screw kit, includes 2 quartz windows, 2 compression washers, 2 window holders, 2 window screws and 10 washers  |

Micro Flow Cell 3 mm / 2 µL





## **10** Parts and Materials for Maintenance

Semi-micro Flow Cell 6 mm / 5 µL

# Semi-micro Flow Cell 6 mm / 5 $\mu L$

NOTE

The semi-micro #1 and #2 gaskets (items 6 and 7) look very similar. Do not mix them up.

| ltem | p/n         | Description                                                                                   |
|------|-------------|-----------------------------------------------------------------------------------------------|
|      | G1314-60183 | Semi-micro flow cell 6 mm, 5 µL<br>(with RFID tag)                                            |
|      | 5021-1823   | Capillary column – detector SST 400 mm lg, 0.12 mm i.d.                                       |
| 1    | G1314-20047 | Cell screw                                                                                    |
|      | G1314-65056 | Semi-micro cell kit, includes two quartz windows, one gasket #1, one #2 and two PTFE gaskets. |
| 2    | 79853-29100 | Conical spring kit, 10/pk                                                                     |
| 3    | 79853-22500 | Ring SST, 2/pk                                                                                |
| 4    | 79853-68743 | PTFE gasket (round hole i.d. 2.5 mm, o.d. 8 mm), (10/pk)                                      |
| 5    | 79853-68742 | Window quartz kit, 2/pk                                                                       |
| 6    |             | Semi-micro #1 gasket (long hole 1.5 x 3.5 mm), PTFE                                           |
| 7    |             | Semi-micro #2 gasket (long hole 2 x 4 mm), PTFE                                               |
| 8    | G1314-44010 | Clip for RFI ID tag                                                                           |
| 9    | 0515-4780   | Screw for Clip, M2.2, 4.5 mm long                                                             |
Semi-micro Flow Cell 6 mm / 5  $\mu$ L





### **10** Parts and Materials for Maintenance

High Pressure Flow Cell 10 mm / 14  $\mu L$ 

# High Pressure Flow Cell 10 mm / 14 $\mu L$

| ltem | p/n         | Description                                                                     |
|------|-------------|---------------------------------------------------------------------------------|
|      | G1314-60182 | High pressure flow cell 10 mm, 14 µL, 400 bar<br>(with RFID tag)                |
|      | G1315-87311 | Capillary ST 0.17 mm x 380 mm S/S                                               |
| 1    | G1314-20047 | Cell screw                                                                      |
|      | G1314-65054 | Cell kit Agilent, comprises: two windows, two KAPTON gaskets and two PEEK rings |
| 2    |             | Ring PEEK kit                                                                   |
| 3    |             | Window quartz kit                                                               |
| 4    |             | Gasket kit, KAPTON                                                              |
| 5    | G1314-44010 | Clip for RFI ID tag                                                             |
| 6    | 0515-4780   | Screw for Clip, M2.2, 4.5 mm long                                               |

### Parts and Materials for Maintenance 10

High Pressure Flow Cell 10 mm / 14  $\mu$ L



Figure 48 High Pressure Flow Cell

10 Parts and Materials for Maintenance Cuvette Holder

# **Cuvette Holder**

For information the use of the cuvette holder, refer to "Using the Cuvette Holder" on page 130.

| p/n         | Description    |
|-------------|----------------|
| G1314-60200 | Cuvette Holder |



Figure 49 Cuvette Holder

# Leak Parts

| ltem | p/n       | Description                           |
|------|-----------|---------------------------------------|
| 3    | 5041-8388 | Leak funnel                           |
| 4    | 5041-8389 | Leak funnel holder                    |
| 5    | 5041-8387 | Tube clip                             |
| 6    | 5062-2463 | Corrugated tubing, PP, 6.5 mm id, 5 m |
| 7    | 5062-2463 | Corrugated tubing, PP, 6.5 mm id, 5 m |





# **10** Parts and Materials for Maintenance Kits

# Kits

# **HPLC System Tool Kit**

HPLC System Tool Kit (G4203-68708) contains some accessories and tools needed for installation and maintenance of the module.

# **Accessory Kit**

Accessory kit (G1314-68755) contains some accessories and tools needed for installation and repair of the module.

| p/n       | Description                                                                                                          |
|-----------|----------------------------------------------------------------------------------------------------------------------|
| 0100-1516 | Fitting male PEEK, 2/pk                                                                                              |
| 5062-8535 | Waste accessory kit, PEEK capillary 0.25 mm i.d., 1/16 o.d., 500 mm long plus 2 MT PTFE tubing i.d. 0.8 m, 1/16 o.d. |
| 5063-6527 | Tubing assembly, i.d. 6 mm, o.d. 9 mm, 1.2 m (to waste)                                                              |
| 5181-1516 | CAN cable, Agilent module to module, 0.5 m                                                                           |



Agilent 1260 Infinity VWD User Manual

# 11 Identifying Cables

Cable Overview 152 Analog Cables 154 Remote Cables 156 BCD Cables 159 CAN/LAN Cables 161 RS-232 Cable Kit 162 External Contact Cable 163

This chapter provides information on cables used with the Agilent 1200 Infinity Series modules.





# **Cable Overview**

## NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

#### **Analog cables**

| p/n         | Description                                       |
|-------------|---------------------------------------------------|
| 35900-60750 | Agilent module to 3394/6 integrators              |
| 35900-60750 | Agilent 35900A A/D converter                      |
| 01046-60105 | Analog cable (BNC to general purpose, spade lugs) |

#### **Remote cables**

| p/n         | Description                                                                              |
|-------------|------------------------------------------------------------------------------------------|
| 03394-60600 | Agilent module to 3396A Series I integrators                                             |
|             | 3396 Series II / 3395A integrator, see details in section "Remote Cables" on page 156 $$ |
| 03396-61010 | Agilent module to 3396 Series III / 3395B integrators                                    |
| 5061-3378   | Remote Cable                                                                             |
| 01046-60201 | Agilent module to general purpose                                                        |

#### **BCD** cables

| p/n         | Description                        |
|-------------|------------------------------------|
| 03396-60560 | Agilent module to 3396 integrators |
| G1351-81600 | Agilent module to general purpose  |

### **CAN** cables

| p/n       | Description                                |
|-----------|--------------------------------------------|
| 5181-1516 | CAN cable, Agilent module to module, 0.5 m |
| 5181-1519 | CAN cable, Agilent module to module, 1 m   |

### LAN cables

| p/n       | Description                                                               |
|-----------|---------------------------------------------------------------------------|
| 5023-0203 | Cross-over network cable, shielded, 3 m (for point to point connection)   |
| 5023-0202 | Twisted pair network cable, shielded, 7 m (for point to point connection) |

#### **External Contact Cable**

| p/n         | Description                                                                 |
|-------------|-----------------------------------------------------------------------------|
| G1103-61611 | External contact cable - Agilent module interface board to general purposes |

#### RS-232 cables

| p/n         | Description                                                                                                                                                                                                                                                                                                      |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G1530-60600 | RS-232 cable, 2 m                                                                                                                                                                                                                                                                                                |
| RS232-61601 | RS-232 cable, 2.5 m<br>Instrument to PC, 9-to-9 pin (female). This cable has special pin-out, and is<br>not compatible with connecting printers and plotters. It's also called "Null<br>Modem Cable" with full handshaking where the wiring is made between pins<br>1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7, 9-9. |
| 5181-1561   | RS-232 cable, 8 m                                                                                                                                                                                                                                                                                                |

# **Analog Cables**



One end of these cables provides a BNC connector to be connected to Agilent modules. The other end depends on the instrument to which connection is being made.

## Agilent Module to 3394/6 Integrators

| p∕n 35900-60750 | Pin 3394/6 | Pin Agilent<br>module | Signal Name   |
|-----------------|------------|-----------------------|---------------|
|                 | 1          |                       | Not connected |
|                 | 2          | Shield                | Analog -      |
|                 | 3          | Center                | Analog +      |
|                 |            |                       |               |
|                 |            |                       |               |

## **Agilent Module to BNC Connector**

| p/n 8120-1840 | Pin BNC | Pin Agilent<br>module | Signal Name |
|---------------|---------|-----------------------|-------------|
|               | Shield  | Shield                | Analog -    |
|               | Center  | Center                | Analog +    |
|               |         |                       |             |

# Agilent Module to General Purpose

| p/n 01046-60105 | Pin | Pin Agilent<br>module | Signal Name   |
|-----------------|-----|-----------------------|---------------|
| TTS TTS         | 1   |                       | Not connected |
|                 | 2   | Black                 | Analog -      |
|                 | 3   | Red                   | Analog +      |
|                 |     |                       |               |
|                 | 2   |                       |               |
|                 |     |                       |               |
|                 |     |                       |               |

# **Remote Cables**



One end of these cables provides a Agilent Technologies APG (Analytical Products Group) remote connector to be connected to Agilent modules. The other end depends on the instrument to be connected to.

### **Agilent Module to 3396A Integrators**

| p/n 03394-60600 | Pin 3396A | Pin Agilent<br>module | Signal Name      | Active<br>(TTL) |
|-----------------|-----------|-----------------------|------------------|-----------------|
|                 | 9         | 1 - White             | Digital ground   |                 |
| 80.15           | NC        | 2 - Brown             | Prepare run      | Low             |
|                 | 3         | 3 - Gray              | Start            | Low             |
|                 | NC        | 4 - Blue              | Shut down        | Low             |
|                 | NC        | 5 - Pink              | Not<br>connected |                 |
|                 | NC        | 6 - Yellow            | Power on         | High            |
|                 | 5,14      | 7 - Red               | Ready            | High            |
|                 | 1         | 8 - Green             | Stop             | Low             |
|                 | NC        | 9 - Black             | Start request    | Low             |
|                 | 13, 15    |                       | Not<br>connected |                 |

### Agilent Module to 3396 Series II / 3395A Integrators

Use the cable Agilent module to 3396A Series I integrators (03394-60600) and cut pin #5 on the integrator side. Otherwise the integrator prints START; not ready.

| p/n 03396-61010 | Pin 33XX | Pin Agilent<br>module | Signal Name    | Active<br>(TTL) |
|-----------------|----------|-----------------------|----------------|-----------------|
|                 | 9        | 1 - White             | Digital ground |                 |
| 80.15           | NC       | 2 - Brown             | Prepare run    | Low             |
|                 | 3        | 3 - Gray              | Start          | Low             |
|                 | NC       | 4 - Blue              | Shut down      | Low             |
|                 | NC       | 5 - Pink              | Not connected  |                 |
|                 | NC       | 6 - Yellow            | Power on       | High            |
|                 | 14       | 7 - Red               | Ready          | High            |
|                 | 4        | 8 - Green             | Stop           | Low             |
|                 | NC       | 9 - Black             | Start request  | Low             |
|                 | 13, 15   |                       | Not connected  |                 |

## Agilent Module to 3396 Series III / 3395B Integrators

# Agilent Module to Agilent 35900 A/D Converters

| p/n 5061-3378 | Pin 35900 A/D | Pin Agilent<br>module | Signal Name    | Active<br>(TTL) |
|---------------|---------------|-----------------------|----------------|-----------------|
|               | 1 - White     | 1 - White             | Digital ground |                 |
|               | 2 - Brown     | 2 - Brown             | Prepare run    | Low             |
|               | 3 - Gray      | 3 - Gray              | Start          | Low             |
|               | 4 - Blue      | 4 - Blue              | Shut down      | Low             |
|               | 5 - Pink      | 5 - Pink              | Not connected  |                 |
| 0             | 6 - Yellow    | 6 - Yellow            | Power on       | High            |
|               | 7 - Red       | 7 - Red               | Ready          | High            |
|               | 8 - Green     | 8 - Green             | Stop           | Low             |
|               | 9 - Black     | 9 - Black             | Start request  | Low             |

| p/n 01046-60201 | Wire Color | Pin Agilent<br>module | Signal Name    | Active<br>(TTL) |
|-----------------|------------|-----------------------|----------------|-----------------|
|                 | White      | 1                     | Digital ground |                 |
|                 | Brown      | 2                     | Prepare run    | Low             |
|                 | Gray       | 3                     | Start          | Low             |
|                 | Blue       | 4                     | Shut down      | Low             |
|                 | Pink       | 5                     | Not connected  |                 |
|                 | Yellow     | 6                     | Power on       | High            |
|                 | Red        | 7                     | Ready          | High            |
|                 | Green      | 8                     | Stop           | Low             |
|                 | Black      | 9                     | Start request  | Low             |

## **Agilent Module to General Purpose**

# **BCD Cables**



One end of these cables provides a 15-pin BCD connector to be connected to the Agilent modules. The other end depends on the instrument to be connected to

### **Agilent Module to General Purpose**

| p/n G1351-81600                                                                                                 | Wire Color    | Pin Agilent<br>module | Signal Name    | BCD Digit |
|-----------------------------------------------------------------------------------------------------------------|---------------|-----------------------|----------------|-----------|
|                                                                                                                 | Green         | 1                     | BCD 5          | 20        |
| - Alexandre - A | Violet        | 2                     | BCD 7          | 80        |
|                                                                                                                 | Blue          | 3                     | BCD 6          | 40        |
|                                                                                                                 | Yellow        | 4                     | BCD 4          | 10        |
|                                                                                                                 | Black         | 5                     | BCD 0          | 1         |
|                                                                                                                 | Orange        | 6                     | BCD 3          | 8         |
|                                                                                                                 | Red           | 7                     | BCD 2          | 4         |
|                                                                                                                 | Brown         | 8                     | BCD 1          | 2         |
|                                                                                                                 | Gray          | 9                     | Digital ground | Gray      |
|                                                                                                                 | Gray/pink     | 10                    | BCD 11         | 800       |
|                                                                                                                 | Red/blue      | 11                    | BCD 10         | 400       |
|                                                                                                                 | White/green   | 12                    | BCD 9          | 200       |
|                                                                                                                 | Brown/green   | 13                    | BCD 8          | 100       |
|                                                                                                                 | not connected | 14                    |                |           |
|                                                                                                                 | not connected | 15                    | + 5 V          | Low       |

## Agilent Module to 3396 Integrators

| p/n 03396-60560 | Pin 3396 | Pin Agilent<br>module | Signal Name    | BCD Digit |
|-----------------|----------|-----------------------|----------------|-----------|
|                 | 1        | 1                     | BCD 5          | 20        |
| 80.15           | 2        | 2                     | BCD 7          | 80        |
|                 | 3        | 3                     | BCD 6          | 40        |
|                 | 4        | 4                     | BCD 4          | 10        |
|                 | 5        | 5                     | BCD0           | 1         |
|                 | 6        | 6                     | BCD 3          | 8         |
|                 | 7        | 7                     | BCD 2          | 4         |
|                 | 8        | 8                     | BCD 1          | 2         |
|                 | 9        | 9                     | Digital ground |           |
|                 | NC       | 15                    | + 5 V          | Low       |

# **CAN/LAN Cables**



Both ends of this cable provide a modular plug to be connected to Agilent modules CAN or LAN connectors.

#### **CAN Cables**

| p/n       | Description                                |
|-----------|--------------------------------------------|
| 5181-1516 | CAN cable, Agilent module to module, 0.5 m |
| 5181-1519 | CAN cable, Agilent module to module, 1 m   |

### LAN Cables

| p/n       | Description                                                               |
|-----------|---------------------------------------------------------------------------|
| 5023-0203 | Cross-over network cable, shielded, 3 m (for point to point connection)   |
| 5023-0202 | Twisted pair network cable, shielded, 7 m (for point to point connection) |

11 Identifying Cables RS-232 Cable Kit

# **RS-232** Cable Kit

| p/n         | Description                                                                                                                                                                                                                                                                                                      |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G1530-60600 | RS-232 cable, 2 m                                                                                                                                                                                                                                                                                                |
| RS232-61601 | RS-232 cable, 2.5 m<br>Instrument to PC, 9-to-9 pin (female). This cable has special pin-out, and is<br>not compatible with connecting printers and plotters. It's also called "Null<br>Modem Cable" with full handshaking where the wiring is made between pins<br>1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7, 9-9. |
| 5181-1561   | RS-232 cable, 8 m                                                                                                                                                                                                                                                                                                |

# **External Contact Cable**



One end of this cable provides a 15-pin plug to be connected to Agilent modules interface board. The other end is for general purpose.

### Agilent Module Interface Board to general purposes

| p/n G1103-61611 | Color        | Pin Agilent<br>module | Signal Name   |
|-----------------|--------------|-----------------------|---------------|
|                 | White        | 1                     | EXT 1         |
|                 | Brown        | 2                     | EXT 1         |
|                 | Green        | 3                     | EXT 2         |
|                 | Yellow       | 4                     | EXT 2         |
|                 | Grey         | 5                     | EXT 3         |
|                 | Pink         | 6                     | EXT 3         |
|                 | Blue         | 7                     | EXT 4         |
|                 | Red          | 8                     | EXT 4         |
|                 | Black        | 9                     | Not connected |
|                 | Violet       | 10                    | Not connected |
|                 | Grey/pink    | 11                    | Not connected |
|                 | Red/blue     | 12                    | Not connected |
|                 | White/green  | 13                    | Not connected |
|                 | Brown/green  | 14                    | Not connected |
|                 | White/yellow | 15                    | Not connected |

## **11** Identifying Cables

**External Contact Cable** 



# 12 Hardware Information

Firmware Description 166 Optional Interface Boards 169 Electrical Connections 172 Serial Number Information (ALL) 173 Rear view of the module 174 Interfaces 175 Interfaces Overview 178 Setting the 8-bit Configuration Switch (without On-board) LAN 182 Communication Settings for RS-232C 183 Special Settings 185 Instrument Layout 187 Early Maintenance Feedback (EMF) 188 EMF Counter 188 Using the EMF Counters 188

This chapter describes the detector in more detail on hardware and electronics.



# **Firmware Description**

The firmware of the instrument consists of two independent sections:

- a non-instrument specific section, called resident system
- an instrument specific section, called main system

#### **Resident System**

This resident section of the firmware is identical for all Agilent 1100/1200/1220/1260/1290 series modules. Its properties are:

- the complete communication capabilities (CAN, LAN and RS-232C)
- memory management
- · ability to update the firmware of the 'main system'

#### **Main System**

Its properties are:

- the complete communication capabilities (CAN, LAN and RS-232C)
- memory management
- · ability to update the firmware of the 'resident system'

In addition the main system comprises the instrument functions that are divided into common functions like

- run synchronization through APG remote,
- error handling,
- diagnostic functions,
- · or module specific functions like
  - internal events such as lamp control, filter movements,
  - raw data collection and conversion to absorbance.

#### **Firmware Updates**

Firmware updates can be done using your user interface:

· PC and Firmware Update Tool with local files on the hard disk

- Instant Pilot (G4208A) with files from a USB Flash Disk
- Agilent Lab Advisor software B.01.03 and above

The file naming conventions are:

PPPP\_RVVV\_XXX.dlb, where

PPPP is the product number, for example, 1315AB for the G1315A/B DAD,

R the firmware revision, for example, A for G1315B or B for the G1315C DAD,

VVV is the revision number, for example 102 is revision 1.02,

XXX is the build number of the firmware.

For instructions on firmware updates refer to section *Replacing Firmware* in chapter "Maintenance" or use the documentation provided with the *Firmware Update Tools*.

Update of main system can be done in the resident system only. Update of the resident system can be done in the main system only.

Main and resident firmware must be from the same set.



Figure 51 Firmware Update Mechanism

NOTE

#### **12** Hardware Information

**Firmware Description** 

### NOTE

Some modules are limited in downgrading due to their main board version or their initial firmware revision. For example, a G1315C DAD SL cannot be downgraded below firmware revision B.01.02 or to a A.xx.xx.

Some modules can be re-branded (e.g. G1314C to G1314B) to allow operation in specific control software environments. In this case the feature set of the target type are use and the feature set of the original are lost. After re-branding (e.g. from G1314B to G1314C), the original feature set is available again.

All these specific informations are described in the documentation provided with the firmware update tools.

The firmware update tools, firmware and documentation are available from the Agilent web.

http://www.chem.agilent.com/\_layouts/agilent/downloadFirmware.aspx?whid=69761

# **Optional Interface Boards**

# **BCD / External Contact Board**

The Agilent 1200 Infinity Series modules have one optional board slot that allows to add an interface board to the modules. Some modules do not have this interface slot. Refer to "Interfaces" on page 175 for details.

#### **Optional Interface Boards**

| p/n         | Description                                                  |
|-------------|--------------------------------------------------------------|
| G1351-68701 | Interface board (BCD) with external contacts and BCD outputs |
| 2110-0004   | Fuse for BCD board, 250 mA                                   |

The BCD board provides a BCD output for the bottle number of the Agilent 1200 Series autosampler and four external contacts. The external contact closure contacts are relay contacts. The maximum settings are: 30 V (AC/DC); 250 mA (fused).



#### **12** Hardware Information

**Optional Interface Boards** 

There are general purpose cables available to connect the BCD output, see "BCD Cables" on page 159 and the external outputs, see "External Contact Cable" on page 163 to external devices.

| Pin | Signal name    | BCD digit |
|-----|----------------|-----------|
| 1   | BCD 5          | 20        |
| 2   | BCD 7          | 80        |
| 3   | BCD 6          | 40        |
| 4   | BCD 4          | 10        |
| 5   | BCD 0          | 1         |
| 6   | BCD 3          | 8         |
| 7   | BCD 2          | 4         |
| 8   | BCD 1          | 2         |
| 9   | Digital ground |           |
| 10  | BCD 11         | 800       |
| 11  | BCD 10         | 400       |
| 12  | BCD 9          | 200       |
| 13  | BCD 8          | 100       |
| 15  | +5V            | Low       |

**Table 15**Detailed connector layout (1200)

## LAN Communication Interface Board

The Agilent modules have one optional board slot that allows to add an interface board to the modules. Some modules do not have this interface slot. Refer to "Interfaces" on page 175 for details.

#### p/n Description

|    | G1369B or G1369-60002 | Interface board (LAN) |
|----|-----------------------|-----------------------|
| OR | G1369C or G1369-60012 | Interface board (LAN) |

# **NOTE** One board is required per Agilent 1260 Infinity instrument. It is recommended to add the LAN board to the detector with highest data rate.

|    |   | 12 |    |
|----|---|----|----|
| IN | U |    | E. |

For the configuration of the G1369 LAN Communication Interface card refer to its documentation.

The following cards can be used with the Agilent 1260 Infinity modules.

| Table | 16 | ΙΔΝ | Boards |
|-------|----|-----|--------|
| lanc  | 10 |     | Dourus |

| Туре                                                                                                    | Vendor               | Supported networks                                                                     |  |  |
|---------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------|--|--|
| Interface board (LAN) (G1369B<br>or G1369-60002) or<br>Interface board (LAN) (G1369C<br>or G1369-60012) | Agilent Technologies | Fast Ethernet, Ethernet/802.3,<br>RJ-45 (10/100Base-TX)<br>recommended for re-ordering |  |  |
| LAN Communication Interface<br>board (G1369A or<br>G1369-60001)                                         | Agilent Technologies | Fast Ethernet, Ethernet/802.3,<br>RJ-45 (10/100Base-TX)<br>( <i>obsolete</i> )         |  |  |
| J4106A <sup>1</sup>                                                                                     | Hewlett Packard      | Ethernet/802.3, RJ-45<br>(10Base-T)                                                    |  |  |
| J4105A <sup>1</sup>                                                                                     | Hewlett Packard      | Token Ring/802.5, DB9, RJ-45<br>(10Base-T)                                             |  |  |
| J4100A <sup>1</sup>                                                                                     | Hewlett Packard      | Fast Ethernet, Ethernet/802.3,<br>RJ-45 (10/100Base-TX) + BNC<br>(10Base2)             |  |  |

<sup>1</sup> These cards may be no longer orderable. Minimum firmware of these Hewlett Packard JetDirect cards is A.05.05.

#### **Recommended LAN Cables**

| p/n       | Description                                                               |
|-----------|---------------------------------------------------------------------------|
| 5023-0203 | Cross-over network cable, shielded, 3 m (for point to point connection)   |
| 5023-0202 | Twisted pair network cable, shielded, 7 m (for point to point connection) |

#### 12 Hardware Information Electrical Connections

# **Electrical Connections**

- The CAN bus is a serial bus with high speed data transfer. The two connectors for the CAN bus are used for internal module data transfer and synchronization.
- One analog output provides signals for integrators or data handling systems.
- The interface board slot is used for external contacts and BCD bottle number output or LAN connections.
- The REMOTE connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features such as start, stop, common shut down, prepare, and so on.
- With the appropriate software, the RS-232C connector may be used to control the module from a computer through a RS-232C connection. This connector is activated and can be configured with the configuration switch.
- The power input socket accepts a line voltage of 100 240 VAC  $\pm 10$  % with a line frequency of 50 or 60 Hz. Maximum power consumption varies by module. There is no voltage selector on your module because the power supply has wide-ranging capability. There are no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

# **Serial Number Information (ALL)**

### **Serial Number Information 1260 Infinity**

The serial number information on the instrument labels provide the following information:

| CCXZZ00000 | Format                                                                                                                                         |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| CC         | Country of manufacturing<br>• DE = Germany<br>• JP = Japan<br>• CN = China                                                                     |
| Х          | Alphabetic character A-Z (used by manufacturing)                                                                                               |
| ZZ         | Alpha-numeric code 0-9, A-Z, where each combination<br>unambiguously denotes a module (there can be more than one<br>code for the same module) |
| 00000      | Serial number                                                                                                                                  |

## Serial Number Information 1200 Series and 1290 Infinity

The serial number information on the instrument labels provide the following information:

| CCYWWSSSSS | Format                                                                                         |
|------------|------------------------------------------------------------------------------------------------|
| CC         | country of manufacturing<br>• DE = Germany<br>• JP = Japan<br>• CN = China                     |
| YWW        | year and week of last major manufacturing change, e.g. 820<br>could be week 20 of 1998 or 2008 |
| SSSSS      | real serial number                                                                             |

**Electrical Connections** 



# Rear view of the module



NOTE

The GPIB interface has been removed with the introduction of the 1260 Infinity modules.

# Interfaces

The Agilent 1200 Infinity Series modules provide the following interfaces:

 Table 17
 Agilent 1200 Infinity Series Interfaces

| Module                                                                                                                                                                                                  | CAN | LAN/BCD<br>(optional) | LAN<br>(on-board) | RS-232 | Analog | APG<br>Remote | Special                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------|-------------------|--------|--------|---------------|------------------------------------------------------------------|
| Pumps                                                                                                                                                                                                   |     |                       |                   |        |        |               |                                                                  |
| G1310B Iso Pump<br>G1311B Quat Pump<br>G1311C Quat Pump VL<br>G1312B Bin Pump<br>K1312B Bin Pump Clinical Ed.<br>G1312C Bin Pump VL<br>1376A Cap Pump<br>G2226A Nano Pump<br>G5611A Bio-inert Quat Pump | 2   | Yes                   | No                | Yes    | 1      | Yes           |                                                                  |
| G4220A/B Bin Pump<br>G4204A Quat Pump                                                                                                                                                                   | 2   | No                    | Yes               | Yes    | No     | Yes           | CAN-DC- OUT for CAN slaves                                       |
| G1361A Prep Pump                                                                                                                                                                                        | 2   | Yes                   | No                | Yes    | No     | Yes           | CAN-DC- OUT for CAN slaves                                       |
| Samplers                                                                                                                                                                                                |     |                       |                   |        |        |               |                                                                  |
| G1329B ALS<br>G2260A Prep ALS                                                                                                                                                                           | 2   | Yes                   | No                | Yes    | No     | Yes           | THERMOSTAT for<br>G1330B/K1330B                                  |
| G1364B FC-PS<br>G1364C FC-AS<br>G1364D FC-μS<br>G1367E HiP ALS<br>K1367E HiP ALS Clinical Ed.<br>G1377A HiP micro ALS<br>G2258A DL ALS<br>G5664A Bio-inert FC-AS<br>G5667A Bio-inert<br>Autosampler     | 2   | Yes                   | No                | Yes    | No     | Yes           | THERMOSTAT for<br>G1330B/K1330B<br>CAN-DC- OUT for CAN<br>slaves |
| G4226A ALS                                                                                                                                                                                              | 2   | Yes                   | No                | Yes    | No     | Yes           |                                                                  |

# **12** Hardware Information

Interfaces

## Table 17 Agilent 1200 Infinity Series Interfaces

| Module                                                         | CAN | LAN/BCD<br>(optional) | LAN<br>(on-board) | RS-232 | Analog | APG<br>Remote | Special                 |
|----------------------------------------------------------------|-----|-----------------------|-------------------|--------|--------|---------------|-------------------------|
| Detectors                                                      |     |                       |                   |        |        |               |                         |
| G1314B VWD VL<br>G1314C VWD VL+                                | 2   | Yes                   | No                | Yes    | 1      | Yes           |                         |
| G1314E/F VWD<br>K1314F Clinical Ed.                            | 2   | No                    | Yes               | Yes    | 1      | Yes           |                         |
| G4212A/B DAD<br>K4212B DAD Clinical Ed.                        | 2   | No                    | Yes               | Yes    | 1      | Yes           |                         |
| G1315C DAD VL+<br>G1365C MWD<br>G1315D DAD VL<br>G1365D MWD VL | 2   | No                    | Yes               | Yes    | 2      | Yes           |                         |
| G1321B FLD<br>K1321B FLD Clinical Ed.<br>G1321C FLD            | 2   | Yes                   | No                | Yes    | 2      | Yes           |                         |
| G1362A RID                                                     | 2   | Yes                   | No                | Yes    | 1      | Yes           |                         |
| G4280A ELSD                                                    | No  | No                    | No                | Yes    | Yes    | Yes           | EXT Contact<br>AUTOZERO |
| Others                                                         |     |                       |                   |        |        |               |                         |
| G1170A Valve Drive                                             | 2   | No                    | No                | No     | No     | No            | 1                       |
| G1316A/C TCC<br>K1316C TCC Clinical Ed.                        | 2   | No                    | No                | Yes    | No     | Yes           |                         |
| G1322A DEG<br>K1322A DEG Clinical Ed.                          | No  | No                    | No                | No     | No     | Yes           | AUX                     |
| G1379B DEG                                                     | No  | No                    | No                | Yes    | No     | Yes           |                         |
| G4225A DEG<br>K4225A DEG Clinical Ed.                          | No  | No                    | No                | Yes    | No     | Yes           |                         |

| Module           | CAN | LAN/BCD<br>(optional) | LAN<br>(on-board) | RS-232 | Analog | APG<br>Remote | Special                                                                           |
|------------------|-----|-----------------------|-------------------|--------|--------|---------------|-----------------------------------------------------------------------------------|
| G4227A Flex Cube | 2   | No                    | No                | No     | No     | No            | CAN-DC- OUT for CAN<br>slaves<br>1                                                |
| G4240A CHIP CUBE | 2   | Yes                   | No                | Yes    | No     | Yes           | CAN-DC- OUT for CAN<br>slaves<br>THERMOSTAT for<br>G1330A/B (NOT<br>USED), K1330B |

#### Table 17 Agilent 1200 Infinity Series Interfaces

Requires a HOST module with on-board LAN (e.g. G4212A or G4220A with minimum firmware B.06.40 or C.06.40) or with additional G1369C LAN Card

NOTE

The detector (DAD/MWD/FLD/VWD/RID) is the preferred access point for control via LAN. The inter-module communication is done via CAN.

- CAN connectors as interface to other modules
- · LAN connector as interface to the control software
- RS-232C as interface to a computer
- · REMOTE connector as interface to other Agilent products
- Analog output connector(s) for signal output

## **Interfaces Overview**

### CAN

The CAN is inter-module communication interface. It is a 2-wire serial bus system supporting high speed data communication and real-time requirement.

#### LAN

The modules have either an interface slot for an LAN card (e.g. Agilent G1369B/C LAN Interface) or they have an on-board LAN interface (e.g. detectors G1315C/D DAD and G1365C/D MWD). This interface allows the control of the module/system via a PC with the appropriate control software. Some modules have neither on-board LAN nor an interface slot for a LAN card (e.g. G1170A Valve Drive or G4227A Flex Cube). These are hosted modules and require a Host module with firmware B.06.40 or later or with additional G1369C LAN Card.

### NOTE

If an Agilent detector (DAD/MWD/FLD/VWD/RID) is in the system, the LAN should be connected to the DAD/MWD/FLD/VWD/RID (due to higher data load). If no Agilent detector is part of the system, the LAN interface should be installed in the pump or autosampler.

## **RS-232C** (Serial)

The RS-232C connector is used to control the module from a computer through RS-232C connection, using the appropriate software. This connector can be configured with the configuration switch module at the rear of the module. Refer to *Communication Settings for RS-232C*.

### NOTE

There is no configuration possible on main boards with on-board LAN. These are pre-configured for

- · 19200 baud,
- 8 data bit with no parity and
- one start bit and one stop bit are always used (not selectable).

The RS-232C is designed as DCE (data communication equipment) with a 9-pin male SUB-D type connector. The pins are defined as:

| Pin | Direction | Function |
|-----|-----------|----------|
| 1   | In        | DCD      |
| 2   | In        | RxD      |
| 3   | Out       | TxD      |
| 4   | Out       | DTR      |
| 5   |           | Ground   |
| 6   | In        | DSR      |
| 7   | Out       | RTS      |
| 8   | In        | CTS      |
| 9   | In        | RI       |

 Table 18
 RS-232C Connection Table



Figure 53 RS-232 Cable

## **Analog Signal Output**

The analog signal output can be distributed to a recording device. For details refer to the description of the module's main board.

### **APG Remote**

The APG Remote connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features as common shut down, prepare, and so on.

Remote control allows easy connection between single instruments or systems to ensure coordinated analysis with simple coupling requirements.

The subminiature D connector is used. The module provides one remote connector which is inputs/outputs (wired- or technique).

To provide maximum safety within a distributed analysis system, one line is dedicated to **SHUT DOWN** the system's critical parts in case any module detects a serious problem. To detect whether all participating modules are switched on or properly powered, one line is defined to summarize the **POWER ON** state of all connected modules. Control of analysis is maintained by signal readiness **READY** for next analysis, followed by **START** of run and optional **STOP** of run triggered on the respective lines. In addition **PREPARE** and **START REQUEST** may be issued. The signal levels are defined as:

- standard TTL levels (0 V is logic true, + 5.0 V is false),
- fan-out is 10,
- input load is 2.2 kOhm against + 5.0 V, and
- · output are open collector type, inputs/outputs (wired- or technique).

**NOTE** All common TTL circuits operate with a 5 V power supply. A TTL signal is defined as "low" or L when between 0 V and 0.8 V and "high" or H when between 2.0 V and 5.0 V (with respect to the ground terminal).
| Table 19 | Remote Signal Distribution |
|----------|----------------------------|
|----------|----------------------------|

| Pin | Signal        | Description                                                                                                                                                                                |
|-----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | DGND          | Digital ground                                                                                                                                                                             |
| 2   | PREPARE       | (L) Request to prepare for analysis (for example, calibration, detector lamp on). Receiver is any module performing pre-analysis activities.                                               |
| 3   | START         | (L) Request to start run / timetable. Receiver is any module performing run-time controlled activities.                                                                                    |
| 4   | SHUT DOWN     | (L) System has serious problem (for example, leak: stops pump).<br>Receiver is any module capable to reduce safety risk.                                                                   |
| 5   |               | Not used                                                                                                                                                                                   |
| 6   | POWER ON      | (H) All modules connected to system are switched on. Receiver is any module relying on operation of others.                                                                                |
| 7   | READY         | (H) System is ready for next analysis. Receiver is any sequence controller.                                                                                                                |
| 8   | STOP          | (L) Request to reach system ready state as soon as possible (for example, stop run, abort or finish and stop injection). Receiver is any module performing run-time controlled activities. |
| 9   | START REQUEST | (L) Request to start injection cycle (for example, by start key on any module). Receiver is the autosampler.                                                                               |

# **Special Interfaces**

There is no special interface for this module.

# Setting the 8-bit Configuration Switch (without On-board) LAN

The 8-bit configuration switch is located at the rear of the module.

This module does not have its own on-board LAN interface. It can be controlled through the LAN interface of another module, and a CAN connection to that module.



Figure 54 Configuration switch (settings depend on configured mode)

All modules without on-board LAN:

- default should be ALL DIPS DOWN (= best settings)
  - Bootp mode for LAN and
  - 19200 baud, 8 data bit / 1 stop bit with no parity for RS-232
- DIP 1 DOWN and DIP 2 UP allows special RS-232 settings
- · for boot/test modes DIPS 1+2 must be UP plus required mode

#### NOTE

For normal operation use the default (best) settings.

Switch settings provide configuration parameters for serial communication protocol and instrument specific initialization procedures.

NOTE

With the introduction of the Agilent 1260 Infinity, all GPIB interfaces have been removed. The preferred communication is LAN.

Setting the 8-bit Configuration Switch (without On-board) LAN

# **NOTE** The following tables represent the configuration switch settings for the modules without on-board LAN only.

| Mode Select | 1 | 2 | 3        | 4  | 5 | 6            | 7    | 8  |
|-------------|---|---|----------|----|---|--------------|------|----|
| RS-232C     | 0 | 1 | Baudrate |    |   | Data<br>Bits | Pari | ty |
| Reserved    | 1 | 0 | Reserved |    |   |              |      |    |
| TEST/BOOT   | 1 | 1 | RSVD     | SY | S | RSVD         | RSVD | FC |

 Table 20
 8-bit Configuration Switch (without on-board LAN)

NOTE

The LAN settings are done on the LAN Interface Card G1369B/C. Refer to the documentation provided with the card.

# **Communication Settings for RS-232C**

The communication protocol used in the column compartment supports only hardware handshake (CTS/RTR).

Switches 1 in down and 2 in up position define that the RS-232C parameters will be changed. Once the change has been completed, the column instrument must be powered up again in order to store the values in the non-volatile memory.

| Mode<br>Select | 1 | 2 | 3        | 4 | 5 | 6         | 7   | 8   |
|----------------|---|---|----------|---|---|-----------|-----|-----|
| RS-232C        | 0 | 1 | Baudrate |   |   | Data Bits | Par | ity |

Table 21 Communication Settings for RS-232C Communication (without on-board LAN)

Use the following tables for selecting the setting which you want to use for RS-232C communication. The number 0 means that the switch is down and 1 means that the switch is up.

#### **12** Hardware Information

Setting the 8-bit Configuration Switch (without On-board) LAN

|   | Switches |   | Baud Rate |   | Switches | Baud Rate |       |
|---|----------|---|-----------|---|----------|-----------|-------|
| 3 | 4        | 5 |           | 3 | 4        | 5         |       |
| 0 | 0        | 0 | 9600      | 1 | 0        | 0         | 9600  |
| 0 | 0        | 1 | 1200      | 1 | 0        | 1         | 14400 |
| 0 | 1        | 0 | 2400      | 1 | 1        | 0         | 19200 |
| 0 | 1        | 1 | 4800      | 1 | 1        | 1         | 38400 |

**Table 22** Baudrate Settings (without on-board LAN)

 Table 23
 Data Bit Settings (without on-board LAN)

| Switch 6 | Data Word Size      |
|----------|---------------------|
| 0        | 7 Bit Communication |
| 1        | 8 Bit Communication |

 Table 24
 Parity Settings (without on-board LAN)

| Swite | hes | Parity      |
|-------|-----|-------------|
| 7     | 8   |             |
| 0     | 0   | No Parity   |
| 0     | 1   | Odd Parity  |
| 1     | 1   | Even Parity |

One start bit and one stop bit are always used (not selectable).

Per default, the module will turn into 19200 baud, 8 data bit with no parity.

# **Special Settings**

The special settings are required for specific actions (normally in a service case).

### **Boot-Resident**

Firmware update procedures may require this mode in case of firmware loading errors (main firmware part).

If you use the following switch settings and power the instrument up again, the instrument firmware stays in the resident mode. It is not operable as a module. It only uses basic functions of the operating system for example, for communication. In this mode the main firmware can be loaded (using update utilities).

 Table 25
 Boot Resident Settings (without on-board LAN)

| Mode Select | SW1 | SW2 | SW3 | SW4 | SW5 | SW6 | SW7 | SW8 |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|
| TEST/BOOT   | 1   | 1   | 0   | 0   | 1   | 0   | 0   | 0   |

#### **12** Hardware Information

Setting the 8-bit Configuration Switch (without On-board) LAN

### **Forced Cold Start**

A forced cold start can be used to bring the module into a defined mode with default parameter settings.

### CAUTION

### Loss of data

Forced cold start erases all methods and data stored in the non-volatile memory. Exceptions are calibration settings, diagnosis and repair log books which will not be erased.

→ Save your methods and data before executing a forced cold start.

If you use the following switch settings and power the instrument up again, a forced cold start has been completed.

#### Table 26 Forced Cold Start Settings (without on-board LAN)

| Mode Select | SW1 | SW2 | SW3 | SW4 | SW5 | SW6 | SW7 | SW8 |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|
| TEST/BOOT   | 1   | 1   | 0   | 0   | 0   | 0   | 0   | 1   |

# **Instrument Layout**

The industrial design of the module incorporates several innovative features. It uses Agilent's E-PAC concept for the packaging of electronics and mechanical assemblies. This concept is based upon the use of expanded polypropylene (EPP) layers of foam plastic spacers in which the mechanical and electronic boards components of the module are placed. This pack is then housed in a metal inner cabinet which is enclosed by a plastic external cabinet. The advantages of this packaging technology are:

- virtual elimination of fixing screws, bolts or ties, reducing the number of components and increasing the speed of assembly/disassembly,
- the plastic layers have air channels molded into them so that cooling air can be guided exactly to the required locations,
- the plastic layers help cushion the electronic and mechanical parts from physical shock, and
- the metal inner cabinet shields the internal electronics from electromagnetic interference and also helps to reduce or eliminate radio frequency emissions from the instrument itself.

#### **12** Hardware Information

Early Maintenance Feedback (EMF)

# Early Maintenance Feedback (EMF)

Maintenance requires the exchange of components which are subject to wear or stress. Ideally, the frequency at which components are exchanged should be based on the intensity of usage of the instrument and the analytical conditions, and not on a predefined time interval. The early maintenance feedback (EMF) feature monitors the usage of specific components in the instrument, and provides feedback when the user-selectable limits have been exceeded. The visual feedback in the user interface provides an indication that maintenance procedures should be scheduled.

# **EMF Counter**

The detector module provides a EMF counter for the lamp. The counter increments with lamp use, and can be assigned a maximum limit which provides visual feedback in the user interface when the limit is exceeded. The counter can be reset to zero after the lamp is exchanged.

The detector provides the following EMF counters:

• Deuterium Lamp On-Time

### Using the EMF Counters

The user-settable EMF limits for the EMF counters enable the early maintenance feedback to be adapted to specific user requirements. The useful lamp burn time is dependent on the requirements for the analysis (high or low sensitivity analysis, wavelength etc.), therefore, the definition of the maximum limits need to be determined based on the specific operating conditions of the instrument.

### **Setting the EMF Limits**

The setting of the EMF limits must be optimized over one or two maintenance cycles. Initially, no EMF limit should be set. When instrument performance indicates maintenance is necessary, take note of the values displayed by lamp counters. Enter these values (or values slightly less than the displayed values) as EMF limits, and then reset the EMF counters to zero. The next time the EMF counters exceed the new EMF limits, the EMF flag will be displayed, providing a reminder that maintenance needs to be scheduled.

This function is only available via Agilent Lab Advisor or Instant Pilot.

NOTE

### **12** Hardware Information

Early Maintenance Feedback (EMF)



# 13 Appendix

General Safety Information 192 Batteries Information 195 Radio Interference 196 Sound Emission 197 UV Radiation 198 Solvent Information 199 Declaration of Conformity for HOX2 Filter 201 Agilent Technologies on Internet 202

This chapter provides addition information on safety, legal and web.



# **General Safety Information**

# **General Safety Information**

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.

### WARNING

#### Ensure the proper usage of the equipment.

The protection provided by the equipment may be impaired.

The operator of this instrument is advised to use the equipment in a manner as specified in this manual.

# **Safety Standards**

This is a Safety Class I instrument (provided with terminal for protective earthing) and has been manufactured and tested according to international safety standards.

# Operation

Before applying power, comply with the installation section. Additionally the following must be observed.

Do not remove instrument covers when operating. Before the instrument is switched on, all protective earth terminals, extension cords, auto-transformers, and devices connected to it must be connected to a protective earth via a ground socket. Any interruption of the protective earth grounding will cause a potential shock hazard that could result in serious personal injury. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any intended operation.

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, and so on) are used for replacement. The use of repaired fuses and the short-circuiting of fuse holders must be avoided.

Some adjustments described in the manual, are made with power supplied to the instrument, and protective covers removed. Energy available at many points may, if contacted, result in personal injury.

Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided whenever possible. When inevitable, this has to be carried out by a skilled person who is aware of the hazard involved. Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present. Do not replace components with power cable connected.

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

Do not install substitute parts or make any unauthorized modification to the instrument.

Capacitors inside the instrument may still be charged, even though the instrument has been disconnected from its source of supply. Dangerous voltages, capable of causing serious personal injury, are present in this instrument. Use extreme caution when handling, testing and adjusting.

When working with solvents, observe appropriate safety procedures (for example, goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet by the solvent vendor, especially when toxic or hazardous solvents are used.

### **13** Appendix

**General Safety Information** 

# **Safety Symbols**

| Symbol   | Description                                                                                                                                                                                 |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ⚠        | The apparatus is marked with this symbol when the user should refer to the instruction manual in order to protect risk of harm to the operator and to protect the apparatus against damage. |
| ź        | Indicates dangerous voltages.                                                                                                                                                               |
|          | Indicates a protected ground terminal.                                                                                                                                                      |
|          | Indicates eye damage may result from directly viewing the light produced by the deuterium lamp used in this product.                                                                        |
| <u>k</u> | The apparatus is marked with this symbol when hot surfaces are available and the user should not touch it when heated up.                                                                   |

#### Table 27Safety Symbols

## WARNING

### A WARNING

#### alerts you to situations that could cause physical injury or death.

→ Do not proceed beyond a warning until you have fully understood and met the indicated conditions.

### CAUTION

### A CAUTION

alerts you to situations that could cause loss of data, or damage of equipment.

→ Do not proceed beyond a caution until you have fully understood and met the indicated conditions.

# **Batteries Information**

### WARNING

Lithium batteries may not be disposed-off into the domestic waste. Transportation of discharged Lithium batteries through carriers regulated by IATA/ICAO, ADR, RID, IMDG is not allowed.

Danger of explosion if battery is incorrectly replaced.

- → Discharged Lithium batteries shall be disposed off locally according to national waste disposal regulations for batteries.
- → Replace only with the same or equivalent type recommended by the equipment manufacturer.



13 Appendix Radio Interference

# **Radio Interference**

Cables supplied by Agilent Technologies are screened to provide optimized protection against radio interference. All cables are in compliance with safety or EMC regulations.

### **Test and Measurement**

If test and measurement equipment is operated with unscreened cables, or used for measurements on open set-ups, the user has to assure that under operating conditions the radio interference limits are still met within the premises.

# **Sound Emission**

### **Manufacturer's Declaration**

This statement is provided to comply with the requirements of the German Sound Emission Directive of 18 January 1991.

This product has a sound pressure emission (at the operator position) < 70 dB.

- Sound Pressure Lp < 70 dB (A)
- At Operator Position
- Normal Operation
- According to ISO 7779:1988/EN 27779/1991 (Type Test)

13 Appendix UV Radiation

# **UV Radiation**

Emissions of ultraviolet radiation (200 – 315 nm) from this product is limited such that radiant exposure incident upon the unprotected skin or eye of operator or service personnel is limited to the following TLVs (Threshold Limit Values) according to the American Conference of Governmental Industrial Hygienists:

Table 28 UV radiation limits

| Exposure/day | Effective irradiance   |
|--------------|------------------------|
| 8 h          | 0.1 μW/cm <sup>2</sup> |
| 10 min       | 5.0 μW/cm <sup>2</sup> |

Typically the radiation values are much smaller than these limits:

Table 29UV radiation typical values

| Position                       | Effective irradiance             |
|--------------------------------|----------------------------------|
| Lamp installed, 50 cm distance | average 0.016 μW/cm <sup>2</sup> |
| Lamp installed, 50 cm distance | maximum 0.14 μW/cm <sup>2</sup>  |

# **Solvent Information**

Observe the following recommendations on the use of solvents.

### **Flow Cell**

Avoid the use of alkaline solutions (pH > 9.5) which can attack quartz and thus impair the optical properties of the flow cell.

Prevent any crystallization of buffer solutions. This will lead into a blockage/damage of the flow cell.

If the flow cell is transported while temperatures are below 5  $^{\circ}$ C, it must be assured that the cell is filled with alcohol.

Aqueous solvents in the flow cell can built up algae. Therefore do not leave aqueous solvents sitting in the flow cell. Add small % of organic solvents (for example, acetonitrile or methanol  $\sim 5$  %).

### Solvents

Brown glass ware can avoid growth of algae.

Always filter solvents, small particles can permanently block the capillaries. Avoid the use of the following steel-corrosive solvents:

- Solutions of alkali halides and their respective acids (for example, lithium iodide, potassium chloride, and so on).
- High concentrations of inorganic acids like nitric acid, sulfuric acid especially at higher temperatures (replace, if your chromatography method allows, by phosphoric acid or phosphate buffer which are less corrosive against stainless steel).
- Halogenated solvents or mixtures which form radicals and/or acids, for example:

 $2\text{CHCl}_3 + \text{O}_2 \rightarrow 2\text{COCl}_2 + 2\text{HCl}$ 

This reaction, in which stainless steel probably acts as a catalyst, occurs quickly with dried chloroform if the drying process removes the stabilizing alcohol.

**Solvent Information** 

- Chromatographic grade ethers, which can contain peroxides (for example, THF, dioxane, di-isopropylether) such ethers should be filtered through dry aluminium oxide which adsorbs the peroxides.
- Solutions of organic acids (acetic acid, formic acid, and so on) in organic solvents. For example, a 1 % solution of acetic acid in methanol will attack steel.
- Solutions containing strong complexing agents (for example, EDTA, ethylene diamine tetra-acetic acid).
- Mixtures of carbon tetrachloride with 2-propanol or THF.

# **Declaration of Conformity for HOX2 Filter**

| Declaration of Conformity                                                                                  |                                                                                          |                                              |                                            |                                    |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------|------------------------------------|
| We herewith inform you that the                                                                            |                                                                                          |                                              |                                            |                                    |
| Holmium Oxide Glass Filter                                                                                 |                                                                                          |                                              |                                            |                                    |
| used in Agilents absorbance dete<br>Standards and Technology (NIS)                                         | ctors listed in the table be<br>() to be applied as certifie                             | low meets the re<br>d wavelength st          | equirements of Nat<br>andard.              | ional Institute of                 |
| According to the publication of<br>oxide glass filters are inherently<br>expanded uncertainty of the certi | NIST in J. Res. Natl. Inst.<br>stable with respect to the v<br>fied wavelength values is | Stand. Technol<br>vavelength scal<br>0.2 nm. | . 112, 303-306 (20)<br>e and need no recer | 07) the holmium<br>tification. The |
| Agilent Technologies guarantees<br>representing the inherently existe                                      | , as required by NIST, tha<br>ent holmium oxide absorpt                                  | t the material of<br>ion bands.              | f the filters is holmi                     | um oxide glass                     |
| Test wavelengths:                                                                                          |                                                                                          |                                              |                                            |                                    |
| Product Number                                                                                             | Series                                                                                   | Measured<br>Wavelengtl                       | Wavelength<br>* Accuracy                   | Optical<br>Bandwidth               |
| 79883A                                                                                                     | 1090                                                                                     | 361.0 nm                                     | +/- 1 nm                                   | 2 nm                               |
| 79854A                                                                                                     | 1050                                                                                     | 418.9 nm                                     |                                            |                                    |
| G1306A                                                                                                     | 1050                                                                                     | 453.7 nm                                     |                                            |                                    |
| G1315A, G1365A                                                                                             | 1100                                                                                     | 536.7 nm                                     |                                            |                                    |
| G1315B/C, G1365B/C                                                                                         | 1100 / 1200 / 1260                                                                       |                                              |                                            |                                    |
| G1600A, G7100A                                                                                             | CE                                                                                       |                                              |                                            |                                    |
| 79853C                                                                                                     | 1050                                                                                     | 360.8nm<br>418.5nm<br>536.4nm                | +/- 2 nm                                   | 6 nm                               |
| G1314A/B/C                                                                                                 | 1100 / 1200 / 1260                                                                       | 360.8nm                                      | +/- 1 nm                                   | 6 nm                               |
| G1314D/E/F                                                                                                 |                                                                                          | 418.5nm                                      |                                            |                                    |
| G4286,, 90A/B/C                                                                                            | 1120 / 1220                                                                              | 536.4nm                                      |                                            |                                    |
| *) The variation in Measured Wa                                                                            | welength depends on the o                                                                | lifferent Optical                            | Bandwidth.                                 |                                    |
|                                                                                                            | May 19, 2010                                                                             |                                              |                                            |                                    |
| /                                                                                                          | (Date)                                                                                   |                                              |                                            |                                    |
| Thomas for                                                                                                 |                                                                                          |                                              | 6. Grble                                   |                                    |
| (R&D Manager)                                                                                              |                                                                                          | (Quality Manager)                            |                                            |                                    |
| P/N 89550-90501                                                                                            | Revision: H<br>Effective by: May 19, 2010                                                |                                              | Agilent Technologies                       |                                    |

### **13** Appendix

**Agilent Technologies on Internet** 

# **Agilent Technologies on Internet**

For the latest information on products and services visit our worldwide web site on the Internet at:

http://www.agilent.com

### 8

8-bit configuration switch without On-Board LAN 182

### A

absorbance Beer-Lambert 76 accessory kit content - 33 Agilent Lab Advisor software 84 Agilent Lab Advisor 84 Agilent on internet 202 algea information 199 ambient non-operating temperature 24 ambient operating temperature 24 analog signal 179 analog cable 154 output range 69 output settings 69 apg remote 180 ASTM Drift and Noise Test 110 reference and conditions 29

### B

band width 6.5 nm 25, 27 battery safety information 195 BCD board external contacts 169 BCD cable 159 beam splitter 14 Beer-Lambert absorbance 76 bench space 22 board HP JetDirect card 170 boards LAN card 170 photodiode boards (ADC) 15

## C

cable analog 154 BCD 159 CAN 161 connecting APG remote 38 connecting CAN 38 connecting LAN 38 connecting the ChemStation 38 connecting the power 38 external contact 163 LAN 161 remote 156 RS-232 162 cables 152 analog BCD 152 153 CAN external contact 153 LAN 153 overview 152 remote 152 RS-232 153 CAN cable 161

cautions and warnings 119 cell test 106 chromatogram 55 cleaning 122 Communication settings RS-232C 183 compensation sensor open 91 compensation sensor short 92 condensation 23 configuration one stack 34, 34 two stack 37 correction factors for flow cells 77 cutoff filter 13 cuvette holder 130 parts 148

## D

dark current test 112 declaration of conformity 201 defect on arrival 32 delivery checklist 33 detection type 25, 27 detector error messages 94 diagnostic signals 80 test functions 103 dimensions 24 drift 25, 27 initial 63

### Ε

electrical connections descriptions of 172

#### EMF

early maintenance feedback 188 setting limits 189 using counters 188 entrance slit assembly 13 environment 23 error message ADC hardware error 100 error messages calibration failed 97 compensation sensor open 91 compensation sensor short 92 detector 94 fan failed 92 filter check failed 100 general 87 grating/filter motor defective 98 heater current missing 96 holmium oxide test failed 98 ignition without cover 93, 93 lamp current missing 94 95 lamp ignition failed 94 lamp voltage missing leak sensor open 90 leak sensor short 91 leak 90 lost CAN partner 89 88 remote timeout shutdown 88 timeout 87 wavelength check failed 99 external contact cable 163 external contacts BCD board 169

### F

fan failed 92 features GLP 26, 28

safety and maintenace 26.28 firmware description 166 main system 166 resident system 166 update tool 167 updates 166, 135, 135 upgade/downgrade 135 upgrade/downgrade 135 flow cell correction factors 77 exchange 126 high pressure (parts) 146 micro (parts) 142 repairing 128 semimicro (parts) 144 standard (parts) 139 types and data 25, 27 frequency range 24

### G

general error messages 87 grating assembly 14

#### Η

holmium oxide declaration of conformity 201 filter 13 test 114 HP JetDirect card 170 humidity 24

### 

information on cuvette holder 130 on solvents 199 on sound emission 197 on UV radiation 198 installation

bench space 22 23 environment of flow connections 46 site requirements 20 instrument layout 187 interface board replacing 134 interfaces 175 internet 202 introduction 10 to optical system 11

#### L

lamp exchange 123 initial drift 63 intensity test 104 type 25, 27 LAN 161 cable communication interface board 170 leak handling system parts replacing 133 leak sensor open 90 leak sensor short 91 leak correcting 132 parts 149 line frequency 24 line voltage 24 linearity 25, 27, 29 lithium batteries 195 lost CAN partner 89

### Μ

maintenance definition of 118 for parts see 'parts for maintenance' 137

introduction 117 overview 121 replacing firmware 135, 135 using the cuvette holder 130 message ADC hardware error 100 calibration failed 97 99 calibration lost filter check failed 100 grating/filter motor defective 98 heater current missing 96 holmium oxide test failed 98 ignition without cover 93, 93 lamp current missing 94 lamp ignition failed 95 lamp voltage missing 94 remote timeout 88 wavelength check failed 99 method 59 load mirror assemblies 14

### Ν

noise, short term 25, 27 non-operating altitude 24 non-operating temperature 24

### 0

online plot 63 spectra 67 operating Altitude 24 operating temperature 24 optical unit beam splitter assembly 14 entrance slit assembly 13 filter assembly 13 filter 13 flow cell 12

grating assembly 14 lamp 13 mirrors 14 photodiode assemblies 15 photodiode boards 15 source lens assembly 13 optimization detector performance 74 of the system 55 stack configuration 34 overview optical path 11 optical system 11 11 system overview

### Ρ

packaging damaged 32 parameter setting 78 parameters detector 60 parts for maintenance cuvette holder 148 high pressure flow cell 146 leak parts 149 micro flow cell 142 overview of maintenance parts 138 semimicro flow cell 144 standard flow cell 139 parts and materials for maintenance 137 peakwidth settings 71 performance optimization 74 photodiode assemblies 15 15 boards photometric accuracy 77

physical specifications 24 physical specifications 24 power consumption 24 power considerations 20 preparing the HPLC system 56

### R

radio interference 196 recalibration of wavelength 80 reference conditions 29 remote cable 156 repairs cautions and warnings 119 overview of simple repairs 121 replacing firmware 135, 135 RS-232C cable 162 communication settings 183 running the sample 65

## S

safety class I 192 safety information lithium batteries 195 safetv general information 192 standards 24 symbols 194 sample info 64 scanning 68 serial number information 173. 173 setting up an analysis 51 settings analog output settings 69

peakwidth 71 setup of detector 60 shutdown 88 signal diagnostic 80 plot 62 site requirements 20 power considerations 20 power cords 21 solvent information 199 sound emission 197 source lens assembly 13 181 special interfaces special setpoints 70 special settings boot-resident 185 forced cold start 186 specification physical 24 specifications physical 24 spectra online 67 stack configuration front view 37 rear view 38 status indicators 80 status indicator 82 stop-flow condition 67 system setup and installation optimizing stack configuration

### T

```
temperature sensor 90
test functions 80, 103
tests
available tests vs interface 83
dark current 112
holmium oxide 114
```

intensity of deuterium lamp 104 wavelength calibration 108 test Quick Noise 111 timeout 87 tool kit hplc system 150 troubleshooting available tests vs interface 83 diagnostic signals 80 error messages 86, 80 overview 80 status indicators 80, 81 test functions 103.80

### U

34

unpacking 32 using analog output settings 69 detector parameters 60 EMF 188 load method 59 online plot 63 online spectra 67 peakwidth settings 71 preparing the HPLC system 56 priming and purging the system 51 requirements and conditions 53 running the sample 65 sample info 64 51 setting up an analysis setup of detector 60 signal plot 62 special setpoints 70 special settings 66 stop-flow condition 67 the cuvette holder 130 the detector 49 turn on 57 typical chromatogram 55

UV radiation 198

#### V

voltage range 24

#### W

warnings and cautions 119 wavelength accuracy 25, 27 calibration 108 range 190-600 nm 25, 27 recalibration 80 weight 24

www.agilent.com

# In This Book

This manual covers the Agilent 1260 Infinity Variable Wavelength Detector (G1314B/C)  $\,$ 

The manual describes the following:

- introcduction and specifications,
- installation,
- using and optimizing,
- troubleshooting and diagnose,
- maintenance,
- parts identification,
- hardware information,
- safety and related information.

 $\ensuremath{\mathbb{C}}$  Agilent Technologies 2011-2012, 2013

Printed in Germany 11/2013



G1314-90013 Rev. C

